
If b – c, 2b – x and b – a are in H.P. then \[a - \dfrac{x}{2},b - \dfrac{x}{2},c - \dfrac{x}{2}\] are in which progression?
Answer
510.9k+ views
Hint: Here we have three terms which are in H.P. Hence, their reciprocals are in A.P., by using mean property of three consecutive terms of A.P., find x in terms of a, b, c. Then consider the asked terms in G.P. and apply the geometric mean property. Verify whether the value x obtained in A.P. satisfies the geometric terms or not. If satisfied, the asked terms are in G.P.
Complete step-by-step answer:
Given that b – c, 2b – x and b – a are in H.P. therefore, $\dfrac{1}{{b - c}},\dfrac{1}{{2b - x}},\dfrac{1}{{b - a}}$ are in A.P.
$\dfrac{1}{{2b - x}} - \dfrac{1}{{b - c}} = \dfrac{1}{{b - a}} - \dfrac{1}{{2b - x}}$ [In A.P. difference between second term and first term is equal to difference between third term and second term]
$ \Rightarrow \dfrac{1}{{2b - x}} + \dfrac{1}{{2b - x}} = \dfrac{1}{{b - c}} + \dfrac{1}{{b - a}}$
On simplifying
$ \Rightarrow \dfrac{2}{{2b - x}} = \dfrac{{\left( {b - a} \right) + \left( {b - c} \right)}}{{\left( {b - c} \right)\left( {b - a} \right)}}$
Cross multiplying
$ \Rightarrow 2b - x = \dfrac{{2\left( {b - c} \right)\left( {b - a} \right)}}{{(b - a) + (b - c)}}$
Rearranging the terms
$ \Rightarrow x = 2b - \dfrac{{2\left( {b - c} \right)\left( {b - a} \right)}}{{(b - a) + (b - c)}}$ …(i)
Let us consider \[a - \dfrac{x}{2},b - \dfrac{x}{2},c - \dfrac{x}{2}\] are in G.P.
Then \[{\left( {b - \dfrac{x}{2}} \right)^2} = \left( {a - \dfrac{x}{2}} \right)\left( {c - \dfrac{x}{2}} \right)\]
Now, L.H.S. = \[{\left( {b - \dfrac{x}{2}} \right)^2}\]
Putting value of x from equation (i)
\[ = {\left( {b - \dfrac{{2b - \dfrac{{2\left( {b - c} \right)\left( {b - a} \right)}}{{(b - a) + (b - c)}}}}{2}} \right)^2}\]
\[ = {\left( {b - b - \dfrac{{\left( {b - c} \right)\left( {b - a} \right)}}{{(b - a) + (b - c)}}} \right)^2}\]
On simplifying
\[ = {\left( { - \dfrac{{\left( {b - c} \right)\left( {b - a} \right)}}{{(b - a) + (b - c)}}} \right)^2}\]
\[ = \dfrac{{{{\left( {b - c} \right)}^2}{{\left( {b - a} \right)}^2}}}{{{{\left( {(b - a) + (b - c)} \right)}^2}}}\]
And R.H.S. = \[\left( {a - \dfrac{x}{2}} \right)\left( {c - \dfrac{x}{2}} \right)\]
Putting value of x from equation (i)
\[ = \left( {a - \dfrac{{2b - \dfrac{{2\left( {b - c} \right)\left( {b - a} \right)}}{{(b - a) + (b - c)}}}}{2}} \right)\left( {c - \dfrac{{2b - \dfrac{{2\left( {b - c} \right)\left( {b - a} \right)}}{{(b - a) + (b - c)}}}}{2}} \right)\]
Simplifying
\[ = \left( {a - b - \dfrac{{\left( {b - c} \right)\left( {b - a} \right)}}{{(b - a) + (b - c)}}} \right)\left( {c - b - \dfrac{{\left( {b - c} \right)\left( {b - a} \right)}}{{(b - a) + (b - c)}}} \right)\]
\[ = \left( { - (b - a) - \dfrac{{\left( {b - c} \right)\left( {b - a} \right)}}{{(b - a) + (b - c)}}} \right)\left( { - (b - c) - \dfrac{{\left( {b - c} \right)\left( {b - a} \right)}}{{(b - a) + (b - c)}}} \right)\]
Taking (−(b – a)) and (−(b – c)) common from each term
\[ = ( - (b - a))( - (b - c))\left( {1 - \dfrac{{\left( {b - c} \right)}}{{(b - a) + (b - c)}}} \right)\left( {1 - \dfrac{{\left( {b - a} \right)}}{{(b - a) + (b - c)}}} \right)\]
\[ = (b - a)(b - c)\left( {\dfrac{{(b - a) + (b - c) - \left( {b - c} \right)}}{{(b - a) + (b - c)}}} \right)\left( {\dfrac{{(b - a) + (b - c) - \left( {b - a} \right)}}{{(b - a) + (b - c)}}} \right)\]
On simplifying
\[ = (b - a)(b - c)\left( {\dfrac{{(b - a)}}{{(b - a) + (b - c)}}} \right)\left( {\dfrac{{(b - c)}}{{(b - a) + (b - c)}}} \right)\]
Rearranging the terms
\[ = \dfrac{{{{\left( {b - c} \right)}^2}{{\left( {b - a} \right)}^2}}}{{{{\left( {(b - a) + (b - c)} \right)}^2}}} = {\left( {b - \dfrac{x}{2}} \right)^2}\]
L.H.S. = R.H.S.
Hence, \[a - \dfrac{x}{2},b - \dfrac{x}{2},c - \dfrac{x}{2}\] are in G.P.
Note: In these types of questions, always use hit and trial method i.e., first consider the asked terms are in A.P., then G.P., then H.P. you can choose by your own choice but conditions must be fulfilled by the terms. Try to satisfy the same value for A.P and G.P. in this question, which is the easiest method.
In this question you can directly use the mean property of given H.P without changing it into A.P. and can find the value of x in terms of a, b, c.
Complete step-by-step answer:
Given that b – c, 2b – x and b – a are in H.P. therefore, $\dfrac{1}{{b - c}},\dfrac{1}{{2b - x}},\dfrac{1}{{b - a}}$ are in A.P.
$\dfrac{1}{{2b - x}} - \dfrac{1}{{b - c}} = \dfrac{1}{{b - a}} - \dfrac{1}{{2b - x}}$ [In A.P. difference between second term and first term is equal to difference between third term and second term]
$ \Rightarrow \dfrac{1}{{2b - x}} + \dfrac{1}{{2b - x}} = \dfrac{1}{{b - c}} + \dfrac{1}{{b - a}}$
On simplifying
$ \Rightarrow \dfrac{2}{{2b - x}} = \dfrac{{\left( {b - a} \right) + \left( {b - c} \right)}}{{\left( {b - c} \right)\left( {b - a} \right)}}$
Cross multiplying
$ \Rightarrow 2b - x = \dfrac{{2\left( {b - c} \right)\left( {b - a} \right)}}{{(b - a) + (b - c)}}$
Rearranging the terms
$ \Rightarrow x = 2b - \dfrac{{2\left( {b - c} \right)\left( {b - a} \right)}}{{(b - a) + (b - c)}}$ …(i)
Let us consider \[a - \dfrac{x}{2},b - \dfrac{x}{2},c - \dfrac{x}{2}\] are in G.P.
Then \[{\left( {b - \dfrac{x}{2}} \right)^2} = \left( {a - \dfrac{x}{2}} \right)\left( {c - \dfrac{x}{2}} \right)\]
Now, L.H.S. = \[{\left( {b - \dfrac{x}{2}} \right)^2}\]
Putting value of x from equation (i)
\[ = {\left( {b - \dfrac{{2b - \dfrac{{2\left( {b - c} \right)\left( {b - a} \right)}}{{(b - a) + (b - c)}}}}{2}} \right)^2}\]
\[ = {\left( {b - b - \dfrac{{\left( {b - c} \right)\left( {b - a} \right)}}{{(b - a) + (b - c)}}} \right)^2}\]
On simplifying
\[ = {\left( { - \dfrac{{\left( {b - c} \right)\left( {b - a} \right)}}{{(b - a) + (b - c)}}} \right)^2}\]
\[ = \dfrac{{{{\left( {b - c} \right)}^2}{{\left( {b - a} \right)}^2}}}{{{{\left( {(b - a) + (b - c)} \right)}^2}}}\]
And R.H.S. = \[\left( {a - \dfrac{x}{2}} \right)\left( {c - \dfrac{x}{2}} \right)\]
Putting value of x from equation (i)
\[ = \left( {a - \dfrac{{2b - \dfrac{{2\left( {b - c} \right)\left( {b - a} \right)}}{{(b - a) + (b - c)}}}}{2}} \right)\left( {c - \dfrac{{2b - \dfrac{{2\left( {b - c} \right)\left( {b - a} \right)}}{{(b - a) + (b - c)}}}}{2}} \right)\]
Simplifying
\[ = \left( {a - b - \dfrac{{\left( {b - c} \right)\left( {b - a} \right)}}{{(b - a) + (b - c)}}} \right)\left( {c - b - \dfrac{{\left( {b - c} \right)\left( {b - a} \right)}}{{(b - a) + (b - c)}}} \right)\]
\[ = \left( { - (b - a) - \dfrac{{\left( {b - c} \right)\left( {b - a} \right)}}{{(b - a) + (b - c)}}} \right)\left( { - (b - c) - \dfrac{{\left( {b - c} \right)\left( {b - a} \right)}}{{(b - a) + (b - c)}}} \right)\]
Taking (−(b – a)) and (−(b – c)) common from each term
\[ = ( - (b - a))( - (b - c))\left( {1 - \dfrac{{\left( {b - c} \right)}}{{(b - a) + (b - c)}}} \right)\left( {1 - \dfrac{{\left( {b - a} \right)}}{{(b - a) + (b - c)}}} \right)\]
\[ = (b - a)(b - c)\left( {\dfrac{{(b - a) + (b - c) - \left( {b - c} \right)}}{{(b - a) + (b - c)}}} \right)\left( {\dfrac{{(b - a) + (b - c) - \left( {b - a} \right)}}{{(b - a) + (b - c)}}} \right)\]
On simplifying
\[ = (b - a)(b - c)\left( {\dfrac{{(b - a)}}{{(b - a) + (b - c)}}} \right)\left( {\dfrac{{(b - c)}}{{(b - a) + (b - c)}}} \right)\]
Rearranging the terms
\[ = \dfrac{{{{\left( {b - c} \right)}^2}{{\left( {b - a} \right)}^2}}}{{{{\left( {(b - a) + (b - c)} \right)}^2}}} = {\left( {b - \dfrac{x}{2}} \right)^2}\]
L.H.S. = R.H.S.
Hence, \[a - \dfrac{x}{2},b - \dfrac{x}{2},c - \dfrac{x}{2}\] are in G.P.
Note: In these types of questions, always use hit and trial method i.e., first consider the asked terms are in A.P., then G.P., then H.P. you can choose by your own choice but conditions must be fulfilled by the terms. Try to satisfy the same value for A.P and G.P. in this question, which is the easiest method.
In this question you can directly use the mean property of given H.P without changing it into A.P. and can find the value of x in terms of a, b, c.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE
