# If $B$ be the exterior angle of a regular polygon of $n$ sides and $A$ is any constant, then prove that $\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n$ terms$ = 0$

Last updated date: 25th Mar 2023

•

Total views: 310.5k

•

Views today: 5.87k

Answer

Verified

310.5k+ views

Hint-This question can be solved by the formula when sin series is in Arithmetic Progression. In A.P two consecutive numbers in a series have common differences.

Now given that the regular polygon is $n - $ sided, also $A$is any constant and $B$ is an exterior angle and we have to prove that

$\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n$ terms$ = 0$

Now we know that for a$n - $ sided polygon,

Sum of interior angle${\text{ = }}\left( {n - 2} \right)\pi $

Sum of exterior angle${\text{ = 2}}n\pi - \left( {n - 2} \right)\pi $

$

= 2n\pi - n\pi + 2\pi \\

= n\pi + 2\pi \\

{\text{or }}B = \dfrac{{n\pi + 2\pi }}{n} \\

$

For finding the value of $B$ we divide sum of exterior angle by$n$ because we want the value of exterior angle not the value of its sum

Now we have given, $\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n$ terms

We can clearly see it is a A.P. with$a = A$ and$d = B = \dfrac{{n\pi + 2\pi }}{n}$

Now we know that the sum of sin series when angle is in A.P.${\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{{nd}}{2}} \right)}}{{{\text{sin}}\left( {\dfrac{d}{2}} \right)}}{\text{sin}}\left( {\dfrac{{2a + (n - 1)d}}{2}} \right)$

Now putting the value of$a$ and$d$ we get,

Sum of sin series when angle is in A.P.

$

{\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{n}{2} \times \dfrac{{n\pi + 2\pi }}{n}} \right)}}{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{{2n}}} \right)}} \times {\text{sin}}\left( {\dfrac{{2A + (n - 1) \times \dfrac{{n\pi + 2\pi }}{n}}}{2}} \right) \\

{\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{2}} \right)}}{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{{2n}}} \right)}} \times {\text{sin}}\left( {\dfrac{{2A + (n - 1) \times \dfrac{{n\pi + 2\pi }}{n}}}{2}} \right) \\

$

Now let us observe${\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{2}} \right)$

Or we can write it as${\text{sin}}\left( {\dfrac{{n + 2}}{2}} \right)\pi $

Now it is given that$n$ is the no. of sides of a regular polygon .Therefore it is an integer.

$

{\text{or }}n \in I \\

{\text{or }}n + 2 \in I \\

{\text{or }}\dfrac{{n + 2}}{2} \in I \\

$

Or we can say

${\text{sin}}\left( {\dfrac{{n + 2}}{2}} \right)\pi {\text{ = sin}}\left( {m\pi } \right){\text{ }}m \in I$

And we know that${\text{sin}}\left( {m\pi } \right) = 0{\text{ }}m \in I$

$

\Rightarrow {\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{2}} \right)}}{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{{2n}}} \right)}} \times {\text{sin}}\left( {\dfrac{{2A + (n - 1) \times \dfrac{{n\pi + 2\pi }}{n}}}{2}} \right) \\

= \dfrac{{\sin \left( {m\pi } \right)}}{{\sin \left( {\dfrac{{m\pi }}{n}} \right)}} \times \sin \left( {2A + \dfrac{{n - 1}}{n}m\pi } \right) \\

$

Now we know that${\text{sin}}\left( {m\pi } \right) = 0$

$

\Rightarrow {\text{ }}\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n{\text{ terms}} = \dfrac{{\sin \left( {m\pi } \right)}}{{\sin \left( {\dfrac{{m\pi }}{n}} \right)}} \times \sin \left( {2A + \dfrac{{n - 1}}{n}m\pi } \right) \\

= 0 \\

$

Hence Proved

Note: Whenever we face such types of problems the key concept is that we should know the formula when the sin series is in A.P. Like in this question it is given that the polygon is regular and we write the formula for sum of interior as well as exterior angle then we see that it is in A.P. and we know the formula when Sin series is in A.P. and thus we prove it.

Now given that the regular polygon is $n - $ sided, also $A$is any constant and $B$ is an exterior angle and we have to prove that

$\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n$ terms$ = 0$

Now we know that for a$n - $ sided polygon,

Sum of interior angle${\text{ = }}\left( {n - 2} \right)\pi $

Sum of exterior angle${\text{ = 2}}n\pi - \left( {n - 2} \right)\pi $

$

= 2n\pi - n\pi + 2\pi \\

= n\pi + 2\pi \\

{\text{or }}B = \dfrac{{n\pi + 2\pi }}{n} \\

$

For finding the value of $B$ we divide sum of exterior angle by$n$ because we want the value of exterior angle not the value of its sum

Now we have given, $\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n$ terms

We can clearly see it is a A.P. with$a = A$ and$d = B = \dfrac{{n\pi + 2\pi }}{n}$

Now we know that the sum of sin series when angle is in A.P.${\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{{nd}}{2}} \right)}}{{{\text{sin}}\left( {\dfrac{d}{2}} \right)}}{\text{sin}}\left( {\dfrac{{2a + (n - 1)d}}{2}} \right)$

Now putting the value of$a$ and$d$ we get,

Sum of sin series when angle is in A.P.

$

{\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{n}{2} \times \dfrac{{n\pi + 2\pi }}{n}} \right)}}{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{{2n}}} \right)}} \times {\text{sin}}\left( {\dfrac{{2A + (n - 1) \times \dfrac{{n\pi + 2\pi }}{n}}}{2}} \right) \\

{\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{2}} \right)}}{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{{2n}}} \right)}} \times {\text{sin}}\left( {\dfrac{{2A + (n - 1) \times \dfrac{{n\pi + 2\pi }}{n}}}{2}} \right) \\

$

Now let us observe${\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{2}} \right)$

Or we can write it as${\text{sin}}\left( {\dfrac{{n + 2}}{2}} \right)\pi $

Now it is given that$n$ is the no. of sides of a regular polygon .Therefore it is an integer.

$

{\text{or }}n \in I \\

{\text{or }}n + 2 \in I \\

{\text{or }}\dfrac{{n + 2}}{2} \in I \\

$

Or we can say

${\text{sin}}\left( {\dfrac{{n + 2}}{2}} \right)\pi {\text{ = sin}}\left( {m\pi } \right){\text{ }}m \in I$

And we know that${\text{sin}}\left( {m\pi } \right) = 0{\text{ }}m \in I$

$

\Rightarrow {\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{2}} \right)}}{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{{2n}}} \right)}} \times {\text{sin}}\left( {\dfrac{{2A + (n - 1) \times \dfrac{{n\pi + 2\pi }}{n}}}{2}} \right) \\

= \dfrac{{\sin \left( {m\pi } \right)}}{{\sin \left( {\dfrac{{m\pi }}{n}} \right)}} \times \sin \left( {2A + \dfrac{{n - 1}}{n}m\pi } \right) \\

$

Now we know that${\text{sin}}\left( {m\pi } \right) = 0$

$

\Rightarrow {\text{ }}\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n{\text{ terms}} = \dfrac{{\sin \left( {m\pi } \right)}}{{\sin \left( {\dfrac{{m\pi }}{n}} \right)}} \times \sin \left( {2A + \dfrac{{n - 1}}{n}m\pi } \right) \\

= 0 \\

$

Hence Proved

Note: Whenever we face such types of problems the key concept is that we should know the formula when the sin series is in A.P. Like in this question it is given that the polygon is regular and we write the formula for sum of interior as well as exterior angle then we see that it is in A.P. and we know the formula when Sin series is in A.P. and thus we prove it.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE