
If $B$ be the exterior angle of a regular polygon of $n$ sides and $A$ is any constant, then prove that $\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n$ terms$ = 0$
Answer
610.5k+ views
Hint-This question can be solved by the formula when sin series is in Arithmetic Progression. In A.P two consecutive numbers in a series have common differences.
Now given that the regular polygon is $n - $ sided, also $A$is any constant and $B$ is an exterior angle and we have to prove that
$\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n$ terms$ = 0$
Now we know that for a$n - $ sided polygon,
Sum of interior angle${\text{ = }}\left( {n - 2} \right)\pi $
Sum of exterior angle${\text{ = 2}}n\pi - \left( {n - 2} \right)\pi $
$
= 2n\pi - n\pi + 2\pi \\
= n\pi + 2\pi \\
{\text{or }}B = \dfrac{{n\pi + 2\pi }}{n} \\
$
For finding the value of $B$ we divide sum of exterior angle by$n$ because we want the value of exterior angle not the value of its sum
Now we have given, $\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n$ terms
We can clearly see it is a A.P. with$a = A$ and$d = B = \dfrac{{n\pi + 2\pi }}{n}$
Now we know that the sum of sin series when angle is in A.P.${\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{{nd}}{2}} \right)}}{{{\text{sin}}\left( {\dfrac{d}{2}} \right)}}{\text{sin}}\left( {\dfrac{{2a + (n - 1)d}}{2}} \right)$
Now putting the value of$a$ and$d$ we get,
Sum of sin series when angle is in A.P.
$
{\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{n}{2} \times \dfrac{{n\pi + 2\pi }}{n}} \right)}}{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{{2n}}} \right)}} \times {\text{sin}}\left( {\dfrac{{2A + (n - 1) \times \dfrac{{n\pi + 2\pi }}{n}}}{2}} \right) \\
{\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{2}} \right)}}{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{{2n}}} \right)}} \times {\text{sin}}\left( {\dfrac{{2A + (n - 1) \times \dfrac{{n\pi + 2\pi }}{n}}}{2}} \right) \\
$
Now let us observe${\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{2}} \right)$
Or we can write it as${\text{sin}}\left( {\dfrac{{n + 2}}{2}} \right)\pi $
Now it is given that$n$ is the no. of sides of a regular polygon .Therefore it is an integer.
$
{\text{or }}n \in I \\
{\text{or }}n + 2 \in I \\
{\text{or }}\dfrac{{n + 2}}{2} \in I \\
$
Or we can say
${\text{sin}}\left( {\dfrac{{n + 2}}{2}} \right)\pi {\text{ = sin}}\left( {m\pi } \right){\text{ }}m \in I$
And we know that${\text{sin}}\left( {m\pi } \right) = 0{\text{ }}m \in I$
$
\Rightarrow {\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{2}} \right)}}{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{{2n}}} \right)}} \times {\text{sin}}\left( {\dfrac{{2A + (n - 1) \times \dfrac{{n\pi + 2\pi }}{n}}}{2}} \right) \\
= \dfrac{{\sin \left( {m\pi } \right)}}{{\sin \left( {\dfrac{{m\pi }}{n}} \right)}} \times \sin \left( {2A + \dfrac{{n - 1}}{n}m\pi } \right) \\
$
Now we know that${\text{sin}}\left( {m\pi } \right) = 0$
$
\Rightarrow {\text{ }}\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n{\text{ terms}} = \dfrac{{\sin \left( {m\pi } \right)}}{{\sin \left( {\dfrac{{m\pi }}{n}} \right)}} \times \sin \left( {2A + \dfrac{{n - 1}}{n}m\pi } \right) \\
= 0 \\
$
Hence Proved
Note: Whenever we face such types of problems the key concept is that we should know the formula when the sin series is in A.P. Like in this question it is given that the polygon is regular and we write the formula for sum of interior as well as exterior angle then we see that it is in A.P. and we know the formula when Sin series is in A.P. and thus we prove it.
Now given that the regular polygon is $n - $ sided, also $A$is any constant and $B$ is an exterior angle and we have to prove that
$\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n$ terms$ = 0$
Now we know that for a$n - $ sided polygon,
Sum of interior angle${\text{ = }}\left( {n - 2} \right)\pi $
Sum of exterior angle${\text{ = 2}}n\pi - \left( {n - 2} \right)\pi $
$
= 2n\pi - n\pi + 2\pi \\
= n\pi + 2\pi \\
{\text{or }}B = \dfrac{{n\pi + 2\pi }}{n} \\
$
For finding the value of $B$ we divide sum of exterior angle by$n$ because we want the value of exterior angle not the value of its sum
Now we have given, $\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n$ terms
We can clearly see it is a A.P. with$a = A$ and$d = B = \dfrac{{n\pi + 2\pi }}{n}$
Now we know that the sum of sin series when angle is in A.P.${\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{{nd}}{2}} \right)}}{{{\text{sin}}\left( {\dfrac{d}{2}} \right)}}{\text{sin}}\left( {\dfrac{{2a + (n - 1)d}}{2}} \right)$
Now putting the value of$a$ and$d$ we get,
Sum of sin series when angle is in A.P.
$
{\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{n}{2} \times \dfrac{{n\pi + 2\pi }}{n}} \right)}}{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{{2n}}} \right)}} \times {\text{sin}}\left( {\dfrac{{2A + (n - 1) \times \dfrac{{n\pi + 2\pi }}{n}}}{2}} \right) \\
{\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{2}} \right)}}{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{{2n}}} \right)}} \times {\text{sin}}\left( {\dfrac{{2A + (n - 1) \times \dfrac{{n\pi + 2\pi }}{n}}}{2}} \right) \\
$
Now let us observe${\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{2}} \right)$
Or we can write it as${\text{sin}}\left( {\dfrac{{n + 2}}{2}} \right)\pi $
Now it is given that$n$ is the no. of sides of a regular polygon .Therefore it is an integer.
$
{\text{or }}n \in I \\
{\text{or }}n + 2 \in I \\
{\text{or }}\dfrac{{n + 2}}{2} \in I \\
$
Or we can say
${\text{sin}}\left( {\dfrac{{n + 2}}{2}} \right)\pi {\text{ = sin}}\left( {m\pi } \right){\text{ }}m \in I$
And we know that${\text{sin}}\left( {m\pi } \right) = 0{\text{ }}m \in I$
$
\Rightarrow {\text{ = }}\dfrac{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{2}} \right)}}{{{\text{sin}}\left( {\dfrac{{n\pi + 2\pi }}{{2n}}} \right)}} \times {\text{sin}}\left( {\dfrac{{2A + (n - 1) \times \dfrac{{n\pi + 2\pi }}{n}}}{2}} \right) \\
= \dfrac{{\sin \left( {m\pi } \right)}}{{\sin \left( {\dfrac{{m\pi }}{n}} \right)}} \times \sin \left( {2A + \dfrac{{n - 1}}{n}m\pi } \right) \\
$
Now we know that${\text{sin}}\left( {m\pi } \right) = 0$
$
\Rightarrow {\text{ }}\sin A + {\text{sin}}\left( {A + B} \right) + {\text{sin}}\left( {A + 2B} \right) + .........n{\text{ terms}} = \dfrac{{\sin \left( {m\pi } \right)}}{{\sin \left( {\dfrac{{m\pi }}{n}} \right)}} \times \sin \left( {2A + \dfrac{{n - 1}}{n}m\pi } \right) \\
= 0 \\
$
Hence Proved
Note: Whenever we face such types of problems the key concept is that we should know the formula when the sin series is in A.P. Like in this question it is given that the polygon is regular and we write the formula for sum of interior as well as exterior angle then we see that it is in A.P. and we know the formula when Sin series is in A.P. and thus we prove it.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

