Answer
Verified
449.1k+ views
Hint: We need to simplify such equation using trigonometric functions
Sum of the trigonometric functions can be formulated as:
\[Cos(A + B) + \operatorname{Cos} (A - B) = 2\operatorname{Cos} A\operatorname{Cos} B\]
We know that the value of a \[\operatorname{Sin} \theta + B\operatorname{Cos} \theta \] lies between: \[ - \sqrt {{a^2} + {b^2}} \leqslant a\operatorname{Sin} \theta + b\cos \theta \leqslant \sqrt {{a^2} + {b^2}} \].
Complete step-by- step solution:
We have,
\[ \Rightarrow a\operatorname{Sin} \theta + b\cos (x + \theta ) + b\cos (x - \theta ) - d.............eqn(1)\]
Taking out b common from\[eqn(1)\], we get
\[ \Rightarrow a\operatorname{Sin} \theta + b\left[ {\cos (x + \theta ) + \cos (x - \theta )} \right] - d...............eqn(2)\]
We know, \[Cos(x - \theta ) + \operatorname{Cos} (x - \theta ) = 2Cosx\,Cos\theta ...........eqn(3)\]
Using the value of \[eqn(3)\]in\[eqn(2)\], we get
\[a\sin x + b\left[ {2Cosx\,\operatorname{Cos} \theta } \right] = d\]
\[ \Rightarrow a\sin x + b\left[ {2bCosx\,\operatorname{Cos} \theta } \right] = d........eqn(4)\]
As \[a\sin \theta + b\operatorname{Cos} \theta \] lies between \[ - \sqrt {{a^2} + {b^2}} \leqslant a\operatorname{Sin} \theta + b\operatorname{Cos} \theta \leqslant \sqrt {{a^2} + {b^2}} \]
\[ \Rightarrow \left| {a\sin \theta + b\cos \theta } \right| \leqslant \sqrt {{a^2} + {b^2}} ........eqn(5)\]
Compare\[a\sin \theta + b\cos \theta \] with \[a\sin x + (2b\operatorname{Cos} \theta )\operatorname{Cos} x\]
We get, \[a = a\] and \[b = 2b\operatorname{Cos} \theta ........eqn(6)\]
Using the value of \[eqn\] (6) and (4) in (5), we have \[a\sin \theta + b\cos \theta = d,\]\[a = a\]and \[b = 2b\operatorname{Cos} \theta \]
\[ \Rightarrow \left| d \right| \leqslant \sqrt {{a^2} + {{(2b\cos \theta )}^2}} \]
\[ \Rightarrow \left| d \right| \leqslant \sqrt {{a^2} + 4{b^2}Co{s^2}\theta } \]
On squaring both sides
\[ \Rightarrow {d^2} \leqslant {a^2} + 4{b^2}Co{s^2}\theta \]
\[ \Rightarrow {d^2} - {a^2} \leqslant 4{b^2}Co{s^2}\theta \]
\[ \Rightarrow \dfrac{{{d^2} - {a^2}}}{{4{b^2}}} \leqslant Co{s^2}\theta \]
Taking under root on both sides
.\[\left| {\operatorname{Cos} \theta } \right| \geqslant \dfrac{{\sqrt {{d^2} - {a^2}} }}{{\sqrt {4{b^2}} }}\]
\[\begin{gathered}
\\
\left| {\operatorname{Cos} \theta } \right| \geqslant \dfrac{{\sqrt {{d^2} - {a^2}} }}{{2\left| b \right|}} \\
\end{gathered} \]
Hence \[\left| {\operatorname{Cos} \theta } \right| = \dfrac{1}{{2\left| b \right|}}\sqrt {{d^2} - {a^2}} \]
Note: Recall that in its basic form \[\,f(x) = \,|x|,\,\]
The absolute value function is one of our tool kit functions. The absolute value function is commonly thought of as providing the distance the number is from zero on a number line. Algebraically, for whatever the input value is, the output is the value without regard to sign. Knowing this, we can use absolute value functions to solve some kinds of real-world problems. Modulus operation on function converts negative function values to positive function values with equal magnitude. As such, we draw a graph of the modulus function by taking a mirror image of the corresponding core graph in x-axis.
We need under that if x lies between \[ - a < x < a\] then \[\left| a \right| \leqslant x.\]
Sum of the trigonometric functions can be formulated as:
\[Cos(A + B) + \operatorname{Cos} (A - B) = 2\operatorname{Cos} A\operatorname{Cos} B\]
We know that the value of a \[\operatorname{Sin} \theta + B\operatorname{Cos} \theta \] lies between: \[ - \sqrt {{a^2} + {b^2}} \leqslant a\operatorname{Sin} \theta + b\cos \theta \leqslant \sqrt {{a^2} + {b^2}} \].
Complete step-by- step solution:
We have,
\[ \Rightarrow a\operatorname{Sin} \theta + b\cos (x + \theta ) + b\cos (x - \theta ) - d.............eqn(1)\]
Taking out b common from\[eqn(1)\], we get
\[ \Rightarrow a\operatorname{Sin} \theta + b\left[ {\cos (x + \theta ) + \cos (x - \theta )} \right] - d...............eqn(2)\]
We know, \[Cos(x - \theta ) + \operatorname{Cos} (x - \theta ) = 2Cosx\,Cos\theta ...........eqn(3)\]
Using the value of \[eqn(3)\]in\[eqn(2)\], we get
\[a\sin x + b\left[ {2Cosx\,\operatorname{Cos} \theta } \right] = d\]
\[ \Rightarrow a\sin x + b\left[ {2bCosx\,\operatorname{Cos} \theta } \right] = d........eqn(4)\]
As \[a\sin \theta + b\operatorname{Cos} \theta \] lies between \[ - \sqrt {{a^2} + {b^2}} \leqslant a\operatorname{Sin} \theta + b\operatorname{Cos} \theta \leqslant \sqrt {{a^2} + {b^2}} \]
\[ \Rightarrow \left| {a\sin \theta + b\cos \theta } \right| \leqslant \sqrt {{a^2} + {b^2}} ........eqn(5)\]
Compare\[a\sin \theta + b\cos \theta \] with \[a\sin x + (2b\operatorname{Cos} \theta )\operatorname{Cos} x\]
We get, \[a = a\] and \[b = 2b\operatorname{Cos} \theta ........eqn(6)\]
Using the value of \[eqn\] (6) and (4) in (5), we have \[a\sin \theta + b\cos \theta = d,\]\[a = a\]and \[b = 2b\operatorname{Cos} \theta \]
\[ \Rightarrow \left| d \right| \leqslant \sqrt {{a^2} + {{(2b\cos \theta )}^2}} \]
\[ \Rightarrow \left| d \right| \leqslant \sqrt {{a^2} + 4{b^2}Co{s^2}\theta } \]
On squaring both sides
\[ \Rightarrow {d^2} \leqslant {a^2} + 4{b^2}Co{s^2}\theta \]
\[ \Rightarrow {d^2} - {a^2} \leqslant 4{b^2}Co{s^2}\theta \]
\[ \Rightarrow \dfrac{{{d^2} - {a^2}}}{{4{b^2}}} \leqslant Co{s^2}\theta \]
Taking under root on both sides
.\[\left| {\operatorname{Cos} \theta } \right| \geqslant \dfrac{{\sqrt {{d^2} - {a^2}} }}{{\sqrt {4{b^2}} }}\]
\[\begin{gathered}
\\
\left| {\operatorname{Cos} \theta } \right| \geqslant \dfrac{{\sqrt {{d^2} - {a^2}} }}{{2\left| b \right|}} \\
\end{gathered} \]
Hence \[\left| {\operatorname{Cos} \theta } \right| = \dfrac{1}{{2\left| b \right|}}\sqrt {{d^2} - {a^2}} \]
Note: Recall that in its basic form \[\,f(x) = \,|x|,\,\]
The absolute value function is one of our tool kit functions. The absolute value function is commonly thought of as providing the distance the number is from zero on a number line. Algebraically, for whatever the input value is, the output is the value without regard to sign. Knowing this, we can use absolute value functions to solve some kinds of real-world problems. Modulus operation on function converts negative function values to positive function values with equal magnitude. As such, we draw a graph of the modulus function by taking a mirror image of the corresponding core graph in x-axis.
We need under that if x lies between \[ - a < x < a\] then \[\left| a \right| \leqslant x.\]
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths