
If \[a\sin x + b\cos (x + \theta ) + b\cos (x - \theta ) = d\], then the value of \[\left| {\cos \theta } \right|\] is equal to.
Answer
487.2k+ views
Hint: We need to simplify such equation using trigonometric functions
Sum of the trigonometric functions can be formulated as:
\[Cos(A + B) + \operatorname{Cos} (A - B) = 2\operatorname{Cos} A\operatorname{Cos} B\]
We know that the value of a \[\operatorname{Sin} \theta + B\operatorname{Cos} \theta \] lies between: \[ - \sqrt {{a^2} + {b^2}} \leqslant a\operatorname{Sin} \theta + b\cos \theta \leqslant \sqrt {{a^2} + {b^2}} \].
Complete step-by- step solution:Given that
\[\sin x + \cos x = 2 \ldots (1)\]
Taking square both sides
$\Rightarrow$\[{(\sin x + \cos x)^2} = {a^2}\]
As we know \[{(a + b)^2} = {a^2} + {b^2} + 2ab\]
$\Rightarrow$\[{\sin ^2}x + {\cos ^2}x + 2\sin x\,\cos x = {a^2}\]
But, \[{\sin ^2}x + {\cos ^2}x = 1\]
$\Rightarrow$\[1 + 2\,\sin x.\,\cos x = {a^2}\]
$\Rightarrow$\[\sin x\,\cos x = \dfrac{{{a^2} - 1}}{2} \ldots (2)\]
Using equation (1)
And applying \[{(a - b)^2} = {(a + b)^2} = 4ab\]
$\Rightarrow$\[{(\sin x - \cos x)^2} = {(\sin x + \cos x)^2} - 4\sin x\,\cos x\]
But the values from equation (1) & (2).
\[{(\sin x - \cos x)^2} = {a^2} - 4\left( {\dfrac{{{a^2} - 1}}{2}} \right)\]
\[ = {a^2} - 2({a^2} - 1)\]
\[ = {a^2} - 2{a^2} + 2\]
\[ = - {a^2} + 2\]
\[{(\sin x - \cos x)^2} = 2 - {a^2}\]
Taking square root both sides
$\Rightarrow$\[\sin x - \,\cos x = \pm \sqrt {2 - {a^2}} \]
$\Rightarrow$\[\,\left| {\sin x - \cos x} \right| = \sqrt {2 - {a^2}} \]
Hence the value of \[\left| {\sin x - \,\cos x} \right|\] would be positive square root of \[(2 - {a^2})\] i.e. \[\sqrt {2 - {a^2}} \]
Note: Modulus of trigonometric functions and periods, we know that modulus operation on function converts negative function values to positive function values with equal magnitude. As such, we draw a graph of the modulus function by taking a mirror image of the corresponding core graph in x-axis.
Recall that in its basic form \[\,f(x) = |x|,\,\]the absolute value function is one of our toolkit functions. The absolute value function is commonly thought of as providing the distance the number is from zero on a number line. Algebraically, for whatever the input value is, the output is the value without regard to sign. Knowing this, we can use absolute value functions to solve some kinds of real-world problems.
this kind of question using \[{\sin ^2}x + {\cos ^2}x = 1\], \[{(a - b)^2} = {(a + b)^2} - 4ab\], and \[{(a + b)^2} = {a^2} + {b^2} + 2ab\].
Sum of the trigonometric functions can be formulated as:
\[Cos(A + B) + \operatorname{Cos} (A - B) = 2\operatorname{Cos} A\operatorname{Cos} B\]
We know that the value of a \[\operatorname{Sin} \theta + B\operatorname{Cos} \theta \] lies between: \[ - \sqrt {{a^2} + {b^2}} \leqslant a\operatorname{Sin} \theta + b\cos \theta \leqslant \sqrt {{a^2} + {b^2}} \].
Complete step-by- step solution:Given that
\[\sin x + \cos x = 2 \ldots (1)\]
Taking square both sides
$\Rightarrow$\[{(\sin x + \cos x)^2} = {a^2}\]
As we know \[{(a + b)^2} = {a^2} + {b^2} + 2ab\]
$\Rightarrow$\[{\sin ^2}x + {\cos ^2}x + 2\sin x\,\cos x = {a^2}\]
But, \[{\sin ^2}x + {\cos ^2}x = 1\]
$\Rightarrow$\[1 + 2\,\sin x.\,\cos x = {a^2}\]
$\Rightarrow$\[\sin x\,\cos x = \dfrac{{{a^2} - 1}}{2} \ldots (2)\]
Using equation (1)
And applying \[{(a - b)^2} = {(a + b)^2} = 4ab\]
$\Rightarrow$\[{(\sin x - \cos x)^2} = {(\sin x + \cos x)^2} - 4\sin x\,\cos x\]
But the values from equation (1) & (2).
\[{(\sin x - \cos x)^2} = {a^2} - 4\left( {\dfrac{{{a^2} - 1}}{2}} \right)\]
\[ = {a^2} - 2({a^2} - 1)\]
\[ = {a^2} - 2{a^2} + 2\]
\[ = - {a^2} + 2\]
\[{(\sin x - \cos x)^2} = 2 - {a^2}\]
Taking square root both sides
$\Rightarrow$\[\sin x - \,\cos x = \pm \sqrt {2 - {a^2}} \]
$\Rightarrow$\[\,\left| {\sin x - \cos x} \right| = \sqrt {2 - {a^2}} \]
Hence the value of \[\left| {\sin x - \,\cos x} \right|\] would be positive square root of \[(2 - {a^2})\] i.e. \[\sqrt {2 - {a^2}} \]
Note: Modulus of trigonometric functions and periods, we know that modulus operation on function converts negative function values to positive function values with equal magnitude. As such, we draw a graph of the modulus function by taking a mirror image of the corresponding core graph in x-axis.
Recall that in its basic form \[\,f(x) = |x|,\,\]the absolute value function is one of our toolkit functions. The absolute value function is commonly thought of as providing the distance the number is from zero on a number line. Algebraically, for whatever the input value is, the output is the value without regard to sign. Knowing this, we can use absolute value functions to solve some kinds of real-world problems.
this kind of question using \[{\sin ^2}x + {\cos ^2}x = 1\], \[{(a - b)^2} = {(a + b)^2} - 4ab\], and \[{(a + b)^2} = {a^2} + {b^2} + 2ab\].
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

State the laws of reflection of light
