Answer
Verified
448.2k+ views
Hint: We need to simplify such equation using trigonometric functions
Sum of the trigonometric functions can be formulated as:
\[Cos(A + B) + \operatorname{Cos} (A - B) = 2\operatorname{Cos} A\operatorname{Cos} B\]
We know that the value of a \[\operatorname{Sin} \theta + B\operatorname{Cos} \theta \] lies between: \[ - \sqrt {{a^2} + {b^2}} \leqslant a\operatorname{Sin} \theta + b\cos \theta \leqslant \sqrt {{a^2} + {b^2}} \].
Complete step-by- step solution:Given that
\[\sin x + \cos x = 2 \ldots (1)\]
Taking square both sides
$\Rightarrow$\[{(\sin x + \cos x)^2} = {a^2}\]
As we know \[{(a + b)^2} = {a^2} + {b^2} + 2ab\]
$\Rightarrow$\[{\sin ^2}x + {\cos ^2}x + 2\sin x\,\cos x = {a^2}\]
But, \[{\sin ^2}x + {\cos ^2}x = 1\]
$\Rightarrow$\[1 + 2\,\sin x.\,\cos x = {a^2}\]
$\Rightarrow$\[\sin x\,\cos x = \dfrac{{{a^2} - 1}}{2} \ldots (2)\]
Using equation (1)
And applying \[{(a - b)^2} = {(a + b)^2} = 4ab\]
$\Rightarrow$\[{(\sin x - \cos x)^2} = {(\sin x + \cos x)^2} - 4\sin x\,\cos x\]
But the values from equation (1) & (2).
\[{(\sin x - \cos x)^2} = {a^2} - 4\left( {\dfrac{{{a^2} - 1}}{2}} \right)\]
\[ = {a^2} - 2({a^2} - 1)\]
\[ = {a^2} - 2{a^2} + 2\]
\[ = - {a^2} + 2\]
\[{(\sin x - \cos x)^2} = 2 - {a^2}\]
Taking square root both sides
$\Rightarrow$\[\sin x - \,\cos x = \pm \sqrt {2 - {a^2}} \]
$\Rightarrow$\[\,\left| {\sin x - \cos x} \right| = \sqrt {2 - {a^2}} \]
Hence the value of \[\left| {\sin x - \,\cos x} \right|\] would be positive square root of \[(2 - {a^2})\] i.e. \[\sqrt {2 - {a^2}} \]
Note: Modulus of trigonometric functions and periods, we know that modulus operation on function converts negative function values to positive function values with equal magnitude. As such, we draw a graph of the modulus function by taking a mirror image of the corresponding core graph in x-axis.
Recall that in its basic form \[\,f(x) = |x|,\,\]the absolute value function is one of our toolkit functions. The absolute value function is commonly thought of as providing the distance the number is from zero on a number line. Algebraically, for whatever the input value is, the output is the value without regard to sign. Knowing this, we can use absolute value functions to solve some kinds of real-world problems.
this kind of question using \[{\sin ^2}x + {\cos ^2}x = 1\], \[{(a - b)^2} = {(a + b)^2} - 4ab\], and \[{(a + b)^2} = {a^2} + {b^2} + 2ab\].
Sum of the trigonometric functions can be formulated as:
\[Cos(A + B) + \operatorname{Cos} (A - B) = 2\operatorname{Cos} A\operatorname{Cos} B\]
We know that the value of a \[\operatorname{Sin} \theta + B\operatorname{Cos} \theta \] lies between: \[ - \sqrt {{a^2} + {b^2}} \leqslant a\operatorname{Sin} \theta + b\cos \theta \leqslant \sqrt {{a^2} + {b^2}} \].
Complete step-by- step solution:Given that
\[\sin x + \cos x = 2 \ldots (1)\]
Taking square both sides
$\Rightarrow$\[{(\sin x + \cos x)^2} = {a^2}\]
As we know \[{(a + b)^2} = {a^2} + {b^2} + 2ab\]
$\Rightarrow$\[{\sin ^2}x + {\cos ^2}x + 2\sin x\,\cos x = {a^2}\]
But, \[{\sin ^2}x + {\cos ^2}x = 1\]
$\Rightarrow$\[1 + 2\,\sin x.\,\cos x = {a^2}\]
$\Rightarrow$\[\sin x\,\cos x = \dfrac{{{a^2} - 1}}{2} \ldots (2)\]
Using equation (1)
And applying \[{(a - b)^2} = {(a + b)^2} = 4ab\]
$\Rightarrow$\[{(\sin x - \cos x)^2} = {(\sin x + \cos x)^2} - 4\sin x\,\cos x\]
But the values from equation (1) & (2).
\[{(\sin x - \cos x)^2} = {a^2} - 4\left( {\dfrac{{{a^2} - 1}}{2}} \right)\]
\[ = {a^2} - 2({a^2} - 1)\]
\[ = {a^2} - 2{a^2} + 2\]
\[ = - {a^2} + 2\]
\[{(\sin x - \cos x)^2} = 2 - {a^2}\]
Taking square root both sides
$\Rightarrow$\[\sin x - \,\cos x = \pm \sqrt {2 - {a^2}} \]
$\Rightarrow$\[\,\left| {\sin x - \cos x} \right| = \sqrt {2 - {a^2}} \]
Hence the value of \[\left| {\sin x - \,\cos x} \right|\] would be positive square root of \[(2 - {a^2})\] i.e. \[\sqrt {2 - {a^2}} \]
Note: Modulus of trigonometric functions and periods, we know that modulus operation on function converts negative function values to positive function values with equal magnitude. As such, we draw a graph of the modulus function by taking a mirror image of the corresponding core graph in x-axis.
Recall that in its basic form \[\,f(x) = |x|,\,\]the absolute value function is one of our toolkit functions. The absolute value function is commonly thought of as providing the distance the number is from zero on a number line. Algebraically, for whatever the input value is, the output is the value without regard to sign. Knowing this, we can use absolute value functions to solve some kinds of real-world problems.
this kind of question using \[{\sin ^2}x + {\cos ^2}x = 1\], \[{(a - b)^2} = {(a + b)^2} - 4ab\], and \[{(a + b)^2} = {a^2} + {b^2} + 2ab\].
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE