
If \[a\sin x + b\cos (x + \theta ) + b\cos (x - \theta ) = d\], then the value of \[\left| {\cos \theta } \right|\] is equal to.
Answer
486k+ views
Hint: We need to simplify such equation using trigonometric functions
Sum of the trigonometric functions can be formulated as:
\[Cos(A + B) + \operatorname{Cos} (A - B) = 2\operatorname{Cos} A\operatorname{Cos} B\]
We know that the value of a \[\operatorname{Sin} \theta + B\operatorname{Cos} \theta \] lies between: \[ - \sqrt {{a^2} + {b^2}} \leqslant a\operatorname{Sin} \theta + b\cos \theta \leqslant \sqrt {{a^2} + {b^2}} \].
Complete step-by- step solution:Given that
\[\sin x + \cos x = 2 \ldots (1)\]
Taking square both sides
$\Rightarrow$\[{(\sin x + \cos x)^2} = {a^2}\]
As we know \[{(a + b)^2} = {a^2} + {b^2} + 2ab\]
$\Rightarrow$\[{\sin ^2}x + {\cos ^2}x + 2\sin x\,\cos x = {a^2}\]
But, \[{\sin ^2}x + {\cos ^2}x = 1\]
$\Rightarrow$\[1 + 2\,\sin x.\,\cos x = {a^2}\]
$\Rightarrow$\[\sin x\,\cos x = \dfrac{{{a^2} - 1}}{2} \ldots (2)\]
Using equation (1)
And applying \[{(a - b)^2} = {(a + b)^2} = 4ab\]
$\Rightarrow$\[{(\sin x - \cos x)^2} = {(\sin x + \cos x)^2} - 4\sin x\,\cos x\]
But the values from equation (1) & (2).
\[{(\sin x - \cos x)^2} = {a^2} - 4\left( {\dfrac{{{a^2} - 1}}{2}} \right)\]
\[ = {a^2} - 2({a^2} - 1)\]
\[ = {a^2} - 2{a^2} + 2\]
\[ = - {a^2} + 2\]
\[{(\sin x - \cos x)^2} = 2 - {a^2}\]
Taking square root both sides
$\Rightarrow$\[\sin x - \,\cos x = \pm \sqrt {2 - {a^2}} \]
$\Rightarrow$\[\,\left| {\sin x - \cos x} \right| = \sqrt {2 - {a^2}} \]
Hence the value of \[\left| {\sin x - \,\cos x} \right|\] would be positive square root of \[(2 - {a^2})\] i.e. \[\sqrt {2 - {a^2}} \]
Note: Modulus of trigonometric functions and periods, we know that modulus operation on function converts negative function values to positive function values with equal magnitude. As such, we draw a graph of the modulus function by taking a mirror image of the corresponding core graph in x-axis.
Recall that in its basic form \[\,f(x) = |x|,\,\]the absolute value function is one of our toolkit functions. The absolute value function is commonly thought of as providing the distance the number is from zero on a number line. Algebraically, for whatever the input value is, the output is the value without regard to sign. Knowing this, we can use absolute value functions to solve some kinds of real-world problems.
this kind of question using \[{\sin ^2}x + {\cos ^2}x = 1\], \[{(a - b)^2} = {(a + b)^2} - 4ab\], and \[{(a + b)^2} = {a^2} + {b^2} + 2ab\].
Sum of the trigonometric functions can be formulated as:
\[Cos(A + B) + \operatorname{Cos} (A - B) = 2\operatorname{Cos} A\operatorname{Cos} B\]
We know that the value of a \[\operatorname{Sin} \theta + B\operatorname{Cos} \theta \] lies between: \[ - \sqrt {{a^2} + {b^2}} \leqslant a\operatorname{Sin} \theta + b\cos \theta \leqslant \sqrt {{a^2} + {b^2}} \].
Complete step-by- step solution:Given that
\[\sin x + \cos x = 2 \ldots (1)\]
Taking square both sides
$\Rightarrow$\[{(\sin x + \cos x)^2} = {a^2}\]
As we know \[{(a + b)^2} = {a^2} + {b^2} + 2ab\]
$\Rightarrow$\[{\sin ^2}x + {\cos ^2}x + 2\sin x\,\cos x = {a^2}\]
But, \[{\sin ^2}x + {\cos ^2}x = 1\]
$\Rightarrow$\[1 + 2\,\sin x.\,\cos x = {a^2}\]
$\Rightarrow$\[\sin x\,\cos x = \dfrac{{{a^2} - 1}}{2} \ldots (2)\]
Using equation (1)
And applying \[{(a - b)^2} = {(a + b)^2} = 4ab\]
$\Rightarrow$\[{(\sin x - \cos x)^2} = {(\sin x + \cos x)^2} - 4\sin x\,\cos x\]
But the values from equation (1) & (2).
\[{(\sin x - \cos x)^2} = {a^2} - 4\left( {\dfrac{{{a^2} - 1}}{2}} \right)\]
\[ = {a^2} - 2({a^2} - 1)\]
\[ = {a^2} - 2{a^2} + 2\]
\[ = - {a^2} + 2\]
\[{(\sin x - \cos x)^2} = 2 - {a^2}\]
Taking square root both sides
$\Rightarrow$\[\sin x - \,\cos x = \pm \sqrt {2 - {a^2}} \]
$\Rightarrow$\[\,\left| {\sin x - \cos x} \right| = \sqrt {2 - {a^2}} \]
Hence the value of \[\left| {\sin x - \,\cos x} \right|\] would be positive square root of \[(2 - {a^2})\] i.e. \[\sqrt {2 - {a^2}} \]
Note: Modulus of trigonometric functions and periods, we know that modulus operation on function converts negative function values to positive function values with equal magnitude. As such, we draw a graph of the modulus function by taking a mirror image of the corresponding core graph in x-axis.
Recall that in its basic form \[\,f(x) = |x|,\,\]the absolute value function is one of our toolkit functions. The absolute value function is commonly thought of as providing the distance the number is from zero on a number line. Algebraically, for whatever the input value is, the output is the value without regard to sign. Knowing this, we can use absolute value functions to solve some kinds of real-world problems.
this kind of question using \[{\sin ^2}x + {\cos ^2}x = 1\], \[{(a - b)^2} = {(a + b)^2} - 4ab\], and \[{(a + b)^2} = {a^2} + {b^2} + 2ab\].
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
