
If $a\ne \left( 2n+1 \right)\dfrac{\pi }{2}$, $n\in z$, then show that the function $h\left( x \right)=\sec x$ is differentiable at $a$ and $h'\left( a \right)=\sec a\tan a$. In general, $h'\left( x \right)=\sec x\tan x$ for all $x\ne \left( 2n+1 \right)\dfrac{\pi }{2}$,$n\in Z$.
Answer
606.6k+ views
Hint: Use the fundamental definition for proving any function to be differentiable or not which is given as
If any function $f\left( x \right)$ is differentiable at point ‘c’ then LHD and RHD should be equal which are given by relation.
Complete step-by-step answer:
LHD$=\underset{x\to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ and RHD$=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$
As we know that any function$f\left( x \right)$ is differentiable at any point c , if its Left Hand derivative(LHD) and Right Hand Derivative(RHD) are equal to each other and equal to $f'\left( c \right)$ as well.
LHD and RHD of any function $f\left( x \right)$ at point ‘c’ can be given as
LHD$=\underset{x\to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ …………………………………………………..(i)
RHD$=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………….(ii)
Hence, any function $f\left( x \right)$ is differentiable at point c if
LHD = RHD=$f'\left( c \right)$ ………………………………………………………….. (iii)
Now coming to the question, function $h\left( x \right)$ is given as $\sec x$ where $h'\left( x \right)=\sec x\tan x$ for all $x\ne \left( 2n+1 \right)\dfrac{\pi }{2},n\in z$.
And we need to determine whether the given function is differentiable at $x=a$ if $a\ne \left( 2n+1 \right)\dfrac{\pi }{2},n\in z$ and $h'\left( a \right)=\sec a\cdot \tan a$$h'\left( a \right)=\sec a\cdot \tan a$.
So, from equation (i) LHD can be given as
LHD$=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{h\left( x \right)-h\left( a \right)}{x-a}$
As, $h\left( x \right)=\sec x$ and hence $h\left( a \right)=\sec a$. So, LHD can be written as
LHD$=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{\sec x-\sec a}{x-a}$
Now, we can replace ‘a’ by ‘a-h’ where $h\to 0$. Hence, above equations can be written in ‘h’ as
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a-h \right)-\sec a}{a-h-a}$
or
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a-h \right)-\sec a}{-h}$
Now, we know that $\sec x=\dfrac{1}{\cos x}$ ; Hence, we get,
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{1}{\cos \left( a-h \right)}-\dfrac{1}{\cos a} \right)\left( \dfrac{-1}{h} \right)$
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{\cos a-\cos \left( a-h \right)}{\cos \left( a-h \right)\cos a} \right]$
Now, we can apply trigonometry identity of $\cos C-\cos D$ which is given as :-
$\cos C-\cos D=-2\sin \left( \dfrac{C-D}{2} \right)\sin \left( \dfrac{C+D}{2} \right)$
Hence, LHD can be written as
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{-2\sin \dfrac{a-a+h}{2}\sin \dfrac{a+a-h}{2}}{\cos \left( a-h \right)\cos a} \right]$
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{-2\sin \dfrac{h}{2}\sin \dfrac{2a-h}{2}}{\cos \left( a-h \right)\cos a} \right]$
or
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \sin \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\times \sin \dfrac{\left( \dfrac{2a-h}{2} \right)}{\cos \left( a-h \right)\cos a}$
Now, we can relation of $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$ , hence we get
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( 1 \right)\sin \left( \dfrac{2a-h}{2} \right)}{\cos \left( a-h \right)\cos a}$
On applying limits, we get
LHD$=\dfrac{\sin a}{\cos a\cos a}$
Now, we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$. Hence, LHD can be given as
LHD$=\sec a\tan a$ ……………………………………………………………….. (iv)
Now, we can calculate RHD by equation (ii), we get
RHD$=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{h\left( x \right)-h\left( a \right)}{x-a}$
Now, we have $h\left( x \right)=\sec x$, hence, we have $h\left( a \right)=\sec a$. So, RHD can be written as
RHD$=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{\sec x-\sec a}{x-a}$
Now, replace ${{a}^{+}}$ by $\left( a+h \right)$ where $h\to 0$.
Hence, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a+h \right)-\sec a}{a+h-a}$
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a+h \right)-\sec a}{h}$
Now, use $\sec x=\dfrac{1}{\cos x}$, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{\cos \left( a+h \right)}-\dfrac{1}{\cos a}}{h}$
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{\cos a-\cos \left( a+h \right)}{\cos \left( a+h \right)\cos a} \right]$
Now, use trigonometric identity of $\cos C-\cos D$ which is given as
$\cos C-\cos D=-2\sin \dfrac{C-D}{2}\sin \dfrac{C+D}{2}$
Hence, RHD can be given as
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{-2\sin \left( \dfrac{a-a-h}{2} \right)\sin \left( \dfrac{a+a+h}{2} \right)}{\cos \left( a+h \right)\cos a} \right]$
or
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{-2\sin \left( \dfrac{-h}{2} \right)\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a} \right]$
We know $\sin \left( -x \right)=-\sin x$, hence above relation can be given as
RHD$\underset{h\to 0}{\mathop{=\lim }}\,\dfrac{2}{h}\sin \left( \dfrac{h}{2} \right)\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
or
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
Now, we can use the relation $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$ to simplify the above equation. Hence, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\left( 1 \right)\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
On putting limits to the above equation, we get
RHD$=\dfrac{\sin a}{\cos a\cos a}=\sec a\tan a$
Hence,
RHD$=\sec a\tan a$ ………………………………………………………………… (v)
Now, we can observe that LHD, RHD at point ‘a’ and value of derivative of $h\left( x \right)$ at point a, all are equal to $\sec a\tan a$. Hence, from equation (iii), we get to know that $h\left( x \right)=\sec x$ is differentiable at $x=a$ where $a\ne \left( 2n+1 \right)\dfrac{\pi }{2}$.
NOTE: Don’t confuse with the statement $x\ne \left( 2n+1 \right)\dfrac{\pi }{2}$ or a is not an odd multiple of$\dfrac{\pi }{2}$ . These are given because we can not put $x=\left( 2n+1 \right)\dfrac{\pi }{2}$ to function $\sec x$ as it will give positive infinite or negative for $\left( 2n+1 \right){{\dfrac{\pi }{2}}^{-}}$ or $\left( 2n+1 \right){{\dfrac{\pi }{2}}^{+}}$.
That’s why these statements are used in question.
We can use the L'Hospital Rule while calculating LHD and RHD values as both are of the form $\dfrac{0}{0}$. So, we don’t need to use any trigonometric identity for solving LHD and RHD if we use L’Hospital Rule.
If any function $f\left( x \right)$ is differentiable at point ‘c’ then LHD and RHD should be equal which are given by relation.
Complete step-by-step answer:
LHD$=\underset{x\to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ and RHD$=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$
As we know that any function$f\left( x \right)$ is differentiable at any point c , if its Left Hand derivative(LHD) and Right Hand Derivative(RHD) are equal to each other and equal to $f'\left( c \right)$ as well.
LHD and RHD of any function $f\left( x \right)$ at point ‘c’ can be given as
LHD$=\underset{x\to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ …………………………………………………..(i)
RHD$=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………….(ii)
Hence, any function $f\left( x \right)$ is differentiable at point c if
LHD = RHD=$f'\left( c \right)$ ………………………………………………………….. (iii)
Now coming to the question, function $h\left( x \right)$ is given as $\sec x$ where $h'\left( x \right)=\sec x\tan x$ for all $x\ne \left( 2n+1 \right)\dfrac{\pi }{2},n\in z$.
And we need to determine whether the given function is differentiable at $x=a$ if $a\ne \left( 2n+1 \right)\dfrac{\pi }{2},n\in z$ and $h'\left( a \right)=\sec a\cdot \tan a$$h'\left( a \right)=\sec a\cdot \tan a$.
So, from equation (i) LHD can be given as
LHD$=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{h\left( x \right)-h\left( a \right)}{x-a}$
As, $h\left( x \right)=\sec x$ and hence $h\left( a \right)=\sec a$. So, LHD can be written as
LHD$=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{\sec x-\sec a}{x-a}$
Now, we can replace ‘a’ by ‘a-h’ where $h\to 0$. Hence, above equations can be written in ‘h’ as
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a-h \right)-\sec a}{a-h-a}$
or
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a-h \right)-\sec a}{-h}$
Now, we know that $\sec x=\dfrac{1}{\cos x}$ ; Hence, we get,
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{1}{\cos \left( a-h \right)}-\dfrac{1}{\cos a} \right)\left( \dfrac{-1}{h} \right)$
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{\cos a-\cos \left( a-h \right)}{\cos \left( a-h \right)\cos a} \right]$
Now, we can apply trigonometry identity of $\cos C-\cos D$ which is given as :-
$\cos C-\cos D=-2\sin \left( \dfrac{C-D}{2} \right)\sin \left( \dfrac{C+D}{2} \right)$
Hence, LHD can be written as
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{-2\sin \dfrac{a-a+h}{2}\sin \dfrac{a+a-h}{2}}{\cos \left( a-h \right)\cos a} \right]$
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{-2\sin \dfrac{h}{2}\sin \dfrac{2a-h}{2}}{\cos \left( a-h \right)\cos a} \right]$
or
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \sin \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\times \sin \dfrac{\left( \dfrac{2a-h}{2} \right)}{\cos \left( a-h \right)\cos a}$
Now, we can relation of $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$ , hence we get
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( 1 \right)\sin \left( \dfrac{2a-h}{2} \right)}{\cos \left( a-h \right)\cos a}$
On applying limits, we get
LHD$=\dfrac{\sin a}{\cos a\cos a}$
Now, we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$. Hence, LHD can be given as
LHD$=\sec a\tan a$ ……………………………………………………………….. (iv)
Now, we can calculate RHD by equation (ii), we get
RHD$=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{h\left( x \right)-h\left( a \right)}{x-a}$
Now, we have $h\left( x \right)=\sec x$, hence, we have $h\left( a \right)=\sec a$. So, RHD can be written as
RHD$=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{\sec x-\sec a}{x-a}$
Now, replace ${{a}^{+}}$ by $\left( a+h \right)$ where $h\to 0$.
Hence, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a+h \right)-\sec a}{a+h-a}$
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a+h \right)-\sec a}{h}$
Now, use $\sec x=\dfrac{1}{\cos x}$, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{\cos \left( a+h \right)}-\dfrac{1}{\cos a}}{h}$
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{\cos a-\cos \left( a+h \right)}{\cos \left( a+h \right)\cos a} \right]$
Now, use trigonometric identity of $\cos C-\cos D$ which is given as
$\cos C-\cos D=-2\sin \dfrac{C-D}{2}\sin \dfrac{C+D}{2}$
Hence, RHD can be given as
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{-2\sin \left( \dfrac{a-a-h}{2} \right)\sin \left( \dfrac{a+a+h}{2} \right)}{\cos \left( a+h \right)\cos a} \right]$
or
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{-2\sin \left( \dfrac{-h}{2} \right)\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a} \right]$
We know $\sin \left( -x \right)=-\sin x$, hence above relation can be given as
RHD$\underset{h\to 0}{\mathop{=\lim }}\,\dfrac{2}{h}\sin \left( \dfrac{h}{2} \right)\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
or
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
Now, we can use the relation $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$ to simplify the above equation. Hence, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\left( 1 \right)\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
On putting limits to the above equation, we get
RHD$=\dfrac{\sin a}{\cos a\cos a}=\sec a\tan a$
Hence,
RHD$=\sec a\tan a$ ………………………………………………………………… (v)
Now, we can observe that LHD, RHD at point ‘a’ and value of derivative of $h\left( x \right)$ at point a, all are equal to $\sec a\tan a$. Hence, from equation (iii), we get to know that $h\left( x \right)=\sec x$ is differentiable at $x=a$ where $a\ne \left( 2n+1 \right)\dfrac{\pi }{2}$.
NOTE: Don’t confuse with the statement $x\ne \left( 2n+1 \right)\dfrac{\pi }{2}$ or a is not an odd multiple of$\dfrac{\pi }{2}$ . These are given because we can not put $x=\left( 2n+1 \right)\dfrac{\pi }{2}$ to function $\sec x$ as it will give positive infinite or negative for $\left( 2n+1 \right){{\dfrac{\pi }{2}}^{-}}$ or $\left( 2n+1 \right){{\dfrac{\pi }{2}}^{+}}$.
That’s why these statements are used in question.
We can use the L'Hospital Rule while calculating LHD and RHD values as both are of the form $\dfrac{0}{0}$. So, we don’t need to use any trigonometric identity for solving LHD and RHD if we use L’Hospital Rule.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

