If $a\ne \left( 2n+1 \right)\dfrac{\pi }{2}$, $n\in z$, then show that the function $h\left( x \right)=\sec x$ is differentiable at $a$ and $h'\left( a \right)=\sec a\tan a$. In general, $h'\left( x \right)=\sec x\tan x$ for all $x\ne \left( 2n+1 \right)\dfrac{\pi }{2}$,$n\in Z$.
Answer
362.4k+ views
Hint: Use the fundamental definition for proving any function to be differentiable or not which is given as
If any function $f\left( x \right)$ is differentiable at point ‘c’ then LHD and RHD should be equal which are given by relation.
Complete step-by-step answer:
LHD$=\underset{x\to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ and RHD$=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$
As we know that any function$f\left( x \right)$ is differentiable at any point c , if its Left Hand derivative(LHD) and Right Hand Derivative(RHD) are equal to each other and equal to $f'\left( c \right)$ as well.
LHD and RHD of any function $f\left( x \right)$ at point ‘c’ can be given as
LHD$=\underset{x\to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ …………………………………………………..(i)
RHD$=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………….(ii)
Hence, any function $f\left( x \right)$ is differentiable at point c if
LHD = RHD=$f'\left( c \right)$ ………………………………………………………….. (iii)
Now coming to the question, function $h\left( x \right)$ is given as $\sec x$ where $h'\left( x \right)=\sec x\tan x$ for all $x\ne \left( 2n+1 \right)\dfrac{\pi }{2},n\in z$.
And we need to determine whether the given function is differentiable at $x=a$ if $a\ne \left( 2n+1 \right)\dfrac{\pi }{2},n\in z$ and $h'\left( a \right)=\sec a\cdot \tan a$$h'\left( a \right)=\sec a\cdot \tan a$.
So, from equation (i) LHD can be given as
LHD$=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{h\left( x \right)-h\left( a \right)}{x-a}$
As, $h\left( x \right)=\sec x$ and hence $h\left( a \right)=\sec a$. So, LHD can be written as
LHD$=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{\sec x-\sec a}{x-a}$
Now, we can replace ‘a’ by ‘a-h’ where $h\to 0$. Hence, above equations can be written in ‘h’ as
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a-h \right)-\sec a}{a-h-a}$
or
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a-h \right)-\sec a}{-h}$
Now, we know that $\sec x=\dfrac{1}{\cos x}$ ; Hence, we get,
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{1}{\cos \left( a-h \right)}-\dfrac{1}{\cos a} \right)\left( \dfrac{-1}{h} \right)$
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{\cos a-\cos \left( a-h \right)}{\cos \left( a-h \right)\cos a} \right]$
Now, we can apply trigonometry identity of $\cos C-\cos D$ which is given as :-
$\cos C-\cos D=-2\sin \left( \dfrac{C-D}{2} \right)\sin \left( \dfrac{C+D}{2} \right)$
Hence, LHD can be written as
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{-2\sin \dfrac{a-a+h}{2}\sin \dfrac{a+a-h}{2}}{\cos \left( a-h \right)\cos a} \right]$
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{-2\sin \dfrac{h}{2}\sin \dfrac{2a-h}{2}}{\cos \left( a-h \right)\cos a} \right]$
or
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \sin \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\times \sin \dfrac{\left( \dfrac{2a-h}{2} \right)}{\cos \left( a-h \right)\cos a}$
Now, we can relation of $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$ , hence we get
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( 1 \right)\sin \left( \dfrac{2a-h}{2} \right)}{\cos \left( a-h \right)\cos a}$
On applying limits, we get
LHD$=\dfrac{\sin a}{\cos a\cos a}$
Now, we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$. Hence, LHD can be given as
LHD$=\sec a\tan a$ ……………………………………………………………….. (iv)
Now, we can calculate RHD by equation (ii), we get
RHD$=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{h\left( x \right)-h\left( a \right)}{x-a}$
Now, we have $h\left( x \right)=\sec x$, hence, we have $h\left( a \right)=\sec a$. So, RHD can be written as
RHD$=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{\sec x-\sec a}{x-a}$
Now, replace ${{a}^{+}}$ by $\left( a+h \right)$ where $h\to 0$.
Hence, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a+h \right)-\sec a}{a+h-a}$
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a+h \right)-\sec a}{h}$
Now, use $\sec x=\dfrac{1}{\cos x}$, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{\cos \left( a+h \right)}-\dfrac{1}{\cos a}}{h}$
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{\cos a-\cos \left( a+h \right)}{\cos \left( a+h \right)\cos a} \right]$
Now, use trigonometric identity of $\cos C-\cos D$ which is given as
$\cos C-\cos D=-2\sin \dfrac{C-D}{2}\sin \dfrac{C+D}{2}$
Hence, RHD can be given as
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{-2\sin \left( \dfrac{a-a-h}{2} \right)\sin \left( \dfrac{a+a+h}{2} \right)}{\cos \left( a+h \right)\cos a} \right]$
or
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{-2\sin \left( \dfrac{-h}{2} \right)\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a} \right]$
We know $\sin \left( -x \right)=-\sin x$, hence above relation can be given as
RHD$\underset{h\to 0}{\mathop{=\lim }}\,\dfrac{2}{h}\sin \left( \dfrac{h}{2} \right)\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
or
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
Now, we can use the relation $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$ to simplify the above equation. Hence, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\left( 1 \right)\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
On putting limits to the above equation, we get
RHD$=\dfrac{\sin a}{\cos a\cos a}=\sec a\tan a$
Hence,
RHD$=\sec a\tan a$ ………………………………………………………………… (v)
Now, we can observe that LHD, RHD at point ‘a’ and value of derivative of $h\left( x \right)$ at point a, all are equal to $\sec a\tan a$. Hence, from equation (iii), we get to know that $h\left( x \right)=\sec x$ is differentiable at $x=a$ where $a\ne \left( 2n+1 \right)\dfrac{\pi }{2}$.
NOTE: Don’t confuse with the statement $x\ne \left( 2n+1 \right)\dfrac{\pi }{2}$ or a is not an odd multiple of$\dfrac{\pi }{2}$ . These are given because we can not put $x=\left( 2n+1 \right)\dfrac{\pi }{2}$ to function $\sec x$ as it will give positive infinite or negative for $\left( 2n+1 \right){{\dfrac{\pi }{2}}^{-}}$ or $\left( 2n+1 \right){{\dfrac{\pi }{2}}^{+}}$.
That’s why these statements are used in question.
We can use the L'Hospital Rule while calculating LHD and RHD values as both are of the form $\dfrac{0}{0}$. So, we don’t need to use any trigonometric identity for solving LHD and RHD if we use L’Hospital Rule.
If any function $f\left( x \right)$ is differentiable at point ‘c’ then LHD and RHD should be equal which are given by relation.
Complete step-by-step answer:
LHD$=\underset{x\to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ and RHD$=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$
As we know that any function$f\left( x \right)$ is differentiable at any point c , if its Left Hand derivative(LHD) and Right Hand Derivative(RHD) are equal to each other and equal to $f'\left( c \right)$ as well.
LHD and RHD of any function $f\left( x \right)$ at point ‘c’ can be given as
LHD$=\underset{x\to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ …………………………………………………..(i)
RHD$=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………….(ii)
Hence, any function $f\left( x \right)$ is differentiable at point c if
LHD = RHD=$f'\left( c \right)$ ………………………………………………………….. (iii)
Now coming to the question, function $h\left( x \right)$ is given as $\sec x$ where $h'\left( x \right)=\sec x\tan x$ for all $x\ne \left( 2n+1 \right)\dfrac{\pi }{2},n\in z$.
And we need to determine whether the given function is differentiable at $x=a$ if $a\ne \left( 2n+1 \right)\dfrac{\pi }{2},n\in z$ and $h'\left( a \right)=\sec a\cdot \tan a$$h'\left( a \right)=\sec a\cdot \tan a$.
So, from equation (i) LHD can be given as
LHD$=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{h\left( x \right)-h\left( a \right)}{x-a}$
As, $h\left( x \right)=\sec x$ and hence $h\left( a \right)=\sec a$. So, LHD can be written as
LHD$=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{\sec x-\sec a}{x-a}$
Now, we can replace ‘a’ by ‘a-h’ where $h\to 0$. Hence, above equations can be written in ‘h’ as
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a-h \right)-\sec a}{a-h-a}$
or
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a-h \right)-\sec a}{-h}$
Now, we know that $\sec x=\dfrac{1}{\cos x}$ ; Hence, we get,
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{1}{\cos \left( a-h \right)}-\dfrac{1}{\cos a} \right)\left( \dfrac{-1}{h} \right)$
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{\cos a-\cos \left( a-h \right)}{\cos \left( a-h \right)\cos a} \right]$
Now, we can apply trigonometry identity of $\cos C-\cos D$ which is given as :-
$\cos C-\cos D=-2\sin \left( \dfrac{C-D}{2} \right)\sin \left( \dfrac{C+D}{2} \right)$
Hence, LHD can be written as
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{-2\sin \dfrac{a-a+h}{2}\sin \dfrac{a+a-h}{2}}{\cos \left( a-h \right)\cos a} \right]$
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{-2\sin \dfrac{h}{2}\sin \dfrac{2a-h}{2}}{\cos \left( a-h \right)\cos a} \right]$
or
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \sin \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\times \sin \dfrac{\left( \dfrac{2a-h}{2} \right)}{\cos \left( a-h \right)\cos a}$
Now, we can relation of $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$ , hence we get
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( 1 \right)\sin \left( \dfrac{2a-h}{2} \right)}{\cos \left( a-h \right)\cos a}$
On applying limits, we get
LHD$=\dfrac{\sin a}{\cos a\cos a}$
Now, we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$. Hence, LHD can be given as
LHD$=\sec a\tan a$ ……………………………………………………………….. (iv)
Now, we can calculate RHD by equation (ii), we get
RHD$=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{h\left( x \right)-h\left( a \right)}{x-a}$
Now, we have $h\left( x \right)=\sec x$, hence, we have $h\left( a \right)=\sec a$. So, RHD can be written as
RHD$=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{\sec x-\sec a}{x-a}$
Now, replace ${{a}^{+}}$ by $\left( a+h \right)$ where $h\to 0$.
Hence, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a+h \right)-\sec a}{a+h-a}$
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a+h \right)-\sec a}{h}$
Now, use $\sec x=\dfrac{1}{\cos x}$, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{\cos \left( a+h \right)}-\dfrac{1}{\cos a}}{h}$
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{\cos a-\cos \left( a+h \right)}{\cos \left( a+h \right)\cos a} \right]$
Now, use trigonometric identity of $\cos C-\cos D$ which is given as
$\cos C-\cos D=-2\sin \dfrac{C-D}{2}\sin \dfrac{C+D}{2}$
Hence, RHD can be given as
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{-2\sin \left( \dfrac{a-a-h}{2} \right)\sin \left( \dfrac{a+a+h}{2} \right)}{\cos \left( a+h \right)\cos a} \right]$
or
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{-2\sin \left( \dfrac{-h}{2} \right)\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a} \right]$
We know $\sin \left( -x \right)=-\sin x$, hence above relation can be given as
RHD$\underset{h\to 0}{\mathop{=\lim }}\,\dfrac{2}{h}\sin \left( \dfrac{h}{2} \right)\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
or
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
Now, we can use the relation $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$ to simplify the above equation. Hence, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\left( 1 \right)\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
On putting limits to the above equation, we get
RHD$=\dfrac{\sin a}{\cos a\cos a}=\sec a\tan a$
Hence,
RHD$=\sec a\tan a$ ………………………………………………………………… (v)
Now, we can observe that LHD, RHD at point ‘a’ and value of derivative of $h\left( x \right)$ at point a, all are equal to $\sec a\tan a$. Hence, from equation (iii), we get to know that $h\left( x \right)=\sec x$ is differentiable at $x=a$ where $a\ne \left( 2n+1 \right)\dfrac{\pi }{2}$.
NOTE: Don’t confuse with the statement $x\ne \left( 2n+1 \right)\dfrac{\pi }{2}$ or a is not an odd multiple of$\dfrac{\pi }{2}$ . These are given because we can not put $x=\left( 2n+1 \right)\dfrac{\pi }{2}$ to function $\sec x$ as it will give positive infinite or negative for $\left( 2n+1 \right){{\dfrac{\pi }{2}}^{-}}$ or $\left( 2n+1 \right){{\dfrac{\pi }{2}}^{+}}$.
That’s why these statements are used in question.
We can use the L'Hospital Rule while calculating LHD and RHD values as both are of the form $\dfrac{0}{0}$. So, we don’t need to use any trigonometric identity for solving LHD and RHD if we use L’Hospital Rule.
Last updated date: 28th Sep 2023
•
Total views: 362.4k
•
Views today: 9.62k
Recently Updated Pages
What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is meant by shramdaan AVoluntary contribution class 11 social science CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

An alternating current can be produced by A a transformer class 12 physics CBSE

What is the value of 01+23+45+67++1617+1819+20 class 11 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers
