If $a\ne \left( 2n+1 \right)\dfrac{\pi }{2}$, $n\in z$, then show that the function $h\left( x \right)=\sec x$ is differentiable at $a$ and $h'\left( a \right)=\sec a\tan a$. In general, $h'\left( x \right)=\sec x\tan x$ for all $x\ne \left( 2n+1 \right)\dfrac{\pi }{2}$,$n\in Z$.
Last updated date: 26th Mar 2023
•
Total views: 306k
•
Views today: 5.83k
Answer
306k+ views
Hint: Use the fundamental definition for proving any function to be differentiable or not which is given as
If any function $f\left( x \right)$ is differentiable at point ‘c’ then LHD and RHD should be equal which are given by relation.
Complete step-by-step answer:
LHD$=\underset{x\to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ and RHD$=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$
As we know that any function$f\left( x \right)$ is differentiable at any point c , if its Left Hand derivative(LHD) and Right Hand Derivative(RHD) are equal to each other and equal to $f'\left( c \right)$ as well.
LHD and RHD of any function $f\left( x \right)$ at point ‘c’ can be given as
LHD$=\underset{x\to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ …………………………………………………..(i)
RHD$=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………….(ii)
Hence, any function $f\left( x \right)$ is differentiable at point c if
LHD = RHD=$f'\left( c \right)$ ………………………………………………………….. (iii)
Now coming to the question, function $h\left( x \right)$ is given as $\sec x$ where $h'\left( x \right)=\sec x\tan x$ for all $x\ne \left( 2n+1 \right)\dfrac{\pi }{2},n\in z$.
And we need to determine whether the given function is differentiable at $x=a$ if $a\ne \left( 2n+1 \right)\dfrac{\pi }{2},n\in z$ and $h'\left( a \right)=\sec a\cdot \tan a$$h'\left( a \right)=\sec a\cdot \tan a$.
So, from equation (i) LHD can be given as
LHD$=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{h\left( x \right)-h\left( a \right)}{x-a}$
As, $h\left( x \right)=\sec x$ and hence $h\left( a \right)=\sec a$. So, LHD can be written as
LHD$=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{\sec x-\sec a}{x-a}$
Now, we can replace ‘a’ by ‘a-h’ where $h\to 0$. Hence, above equations can be written in ‘h’ as
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a-h \right)-\sec a}{a-h-a}$
or
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a-h \right)-\sec a}{-h}$
Now, we know that $\sec x=\dfrac{1}{\cos x}$ ; Hence, we get,
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{1}{\cos \left( a-h \right)}-\dfrac{1}{\cos a} \right)\left( \dfrac{-1}{h} \right)$
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{\cos a-\cos \left( a-h \right)}{\cos \left( a-h \right)\cos a} \right]$
Now, we can apply trigonometry identity of $\cos C-\cos D$ which is given as :-
$\cos C-\cos D=-2\sin \left( \dfrac{C-D}{2} \right)\sin \left( \dfrac{C+D}{2} \right)$
Hence, LHD can be written as
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{-2\sin \dfrac{a-a+h}{2}\sin \dfrac{a+a-h}{2}}{\cos \left( a-h \right)\cos a} \right]$
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{-2\sin \dfrac{h}{2}\sin \dfrac{2a-h}{2}}{\cos \left( a-h \right)\cos a} \right]$
or
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \sin \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\times \sin \dfrac{\left( \dfrac{2a-h}{2} \right)}{\cos \left( a-h \right)\cos a}$
Now, we can relation of $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$ , hence we get
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( 1 \right)\sin \left( \dfrac{2a-h}{2} \right)}{\cos \left( a-h \right)\cos a}$
On applying limits, we get
LHD$=\dfrac{\sin a}{\cos a\cos a}$
Now, we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$. Hence, LHD can be given as
LHD$=\sec a\tan a$ ……………………………………………………………….. (iv)
Now, we can calculate RHD by equation (ii), we get
RHD$=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{h\left( x \right)-h\left( a \right)}{x-a}$
Now, we have $h\left( x \right)=\sec x$, hence, we have $h\left( a \right)=\sec a$. So, RHD can be written as
RHD$=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{\sec x-\sec a}{x-a}$
Now, replace ${{a}^{+}}$ by $\left( a+h \right)$ where $h\to 0$.
Hence, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a+h \right)-\sec a}{a+h-a}$
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a+h \right)-\sec a}{h}$
Now, use $\sec x=\dfrac{1}{\cos x}$, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{\cos \left( a+h \right)}-\dfrac{1}{\cos a}}{h}$
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{\cos a-\cos \left( a+h \right)}{\cos \left( a+h \right)\cos a} \right]$
Now, use trigonometric identity of $\cos C-\cos D$ which is given as
$\cos C-\cos D=-2\sin \dfrac{C-D}{2}\sin \dfrac{C+D}{2}$
Hence, RHD can be given as
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{-2\sin \left( \dfrac{a-a-h}{2} \right)\sin \left( \dfrac{a+a+h}{2} \right)}{\cos \left( a+h \right)\cos a} \right]$
or
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{-2\sin \left( \dfrac{-h}{2} \right)\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a} \right]$
We know $\sin \left( -x \right)=-\sin x$, hence above relation can be given as
RHD$\underset{h\to 0}{\mathop{=\lim }}\,\dfrac{2}{h}\sin \left( \dfrac{h}{2} \right)\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
or
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
Now, we can use the relation $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$ to simplify the above equation. Hence, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\left( 1 \right)\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
On putting limits to the above equation, we get
RHD$=\dfrac{\sin a}{\cos a\cos a}=\sec a\tan a$
Hence,
RHD$=\sec a\tan a$ ………………………………………………………………… (v)
Now, we can observe that LHD, RHD at point ‘a’ and value of derivative of $h\left( x \right)$ at point a, all are equal to $\sec a\tan a$. Hence, from equation (iii), we get to know that $h\left( x \right)=\sec x$ is differentiable at $x=a$ where $a\ne \left( 2n+1 \right)\dfrac{\pi }{2}$.
NOTE: Don’t confuse with the statement $x\ne \left( 2n+1 \right)\dfrac{\pi }{2}$ or a is not an odd multiple of$\dfrac{\pi }{2}$ . These are given because we can not put $x=\left( 2n+1 \right)\dfrac{\pi }{2}$ to function $\sec x$ as it will give positive infinite or negative for $\left( 2n+1 \right){{\dfrac{\pi }{2}}^{-}}$ or $\left( 2n+1 \right){{\dfrac{\pi }{2}}^{+}}$.
That’s why these statements are used in question.
We can use the L'Hospital Rule while calculating LHD and RHD values as both are of the form $\dfrac{0}{0}$. So, we don’t need to use any trigonometric identity for solving LHD and RHD if we use L’Hospital Rule.
If any function $f\left( x \right)$ is differentiable at point ‘c’ then LHD and RHD should be equal which are given by relation.
Complete step-by-step answer:
LHD$=\underset{x\to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ and RHD$=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$
As we know that any function$f\left( x \right)$ is differentiable at any point c , if its Left Hand derivative(LHD) and Right Hand Derivative(RHD) are equal to each other and equal to $f'\left( c \right)$ as well.
LHD and RHD of any function $f\left( x \right)$ at point ‘c’ can be given as
LHD$=\underset{x\to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ …………………………………………………..(i)
RHD$=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………….(ii)
Hence, any function $f\left( x \right)$ is differentiable at point c if
LHD = RHD=$f'\left( c \right)$ ………………………………………………………….. (iii)
Now coming to the question, function $h\left( x \right)$ is given as $\sec x$ where $h'\left( x \right)=\sec x\tan x$ for all $x\ne \left( 2n+1 \right)\dfrac{\pi }{2},n\in z$.
And we need to determine whether the given function is differentiable at $x=a$ if $a\ne \left( 2n+1 \right)\dfrac{\pi }{2},n\in z$ and $h'\left( a \right)=\sec a\cdot \tan a$$h'\left( a \right)=\sec a\cdot \tan a$.
So, from equation (i) LHD can be given as
LHD$=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{h\left( x \right)-h\left( a \right)}{x-a}$
As, $h\left( x \right)=\sec x$ and hence $h\left( a \right)=\sec a$. So, LHD can be written as
LHD$=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{\sec x-\sec a}{x-a}$
Now, we can replace ‘a’ by ‘a-h’ where $h\to 0$. Hence, above equations can be written in ‘h’ as
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a-h \right)-\sec a}{a-h-a}$
or
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a-h \right)-\sec a}{-h}$
Now, we know that $\sec x=\dfrac{1}{\cos x}$ ; Hence, we get,
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{1}{\cos \left( a-h \right)}-\dfrac{1}{\cos a} \right)\left( \dfrac{-1}{h} \right)$
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{\cos a-\cos \left( a-h \right)}{\cos \left( a-h \right)\cos a} \right]$
Now, we can apply trigonometry identity of $\cos C-\cos D$ which is given as :-
$\cos C-\cos D=-2\sin \left( \dfrac{C-D}{2} \right)\sin \left( \dfrac{C+D}{2} \right)$
Hence, LHD can be written as
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{-2\sin \dfrac{a-a+h}{2}\sin \dfrac{a+a-h}{2}}{\cos \left( a-h \right)\cos a} \right]$
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{h}\left[ \dfrac{-2\sin \dfrac{h}{2}\sin \dfrac{2a-h}{2}}{\cos \left( a-h \right)\cos a} \right]$
or
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \sin \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\times \sin \dfrac{\left( \dfrac{2a-h}{2} \right)}{\cos \left( a-h \right)\cos a}$
Now, we can relation of $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$ , hence we get
LHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( 1 \right)\sin \left( \dfrac{2a-h}{2} \right)}{\cos \left( a-h \right)\cos a}$
On applying limits, we get
LHD$=\dfrac{\sin a}{\cos a\cos a}$
Now, we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$. Hence, LHD can be given as
LHD$=\sec a\tan a$ ……………………………………………………………….. (iv)
Now, we can calculate RHD by equation (ii), we get
RHD$=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{h\left( x \right)-h\left( a \right)}{x-a}$
Now, we have $h\left( x \right)=\sec x$, hence, we have $h\left( a \right)=\sec a$. So, RHD can be written as
RHD$=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{\sec x-\sec a}{x-a}$
Now, replace ${{a}^{+}}$ by $\left( a+h \right)$ where $h\to 0$.
Hence, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a+h \right)-\sec a}{a+h-a}$
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sec \left( a+h \right)-\sec a}{h}$
Now, use $\sec x=\dfrac{1}{\cos x}$, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{\cos \left( a+h \right)}-\dfrac{1}{\cos a}}{h}$
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{\cos a-\cos \left( a+h \right)}{\cos \left( a+h \right)\cos a} \right]$
Now, use trigonometric identity of $\cos C-\cos D$ which is given as
$\cos C-\cos D=-2\sin \dfrac{C-D}{2}\sin \dfrac{C+D}{2}$
Hence, RHD can be given as
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{-2\sin \left( \dfrac{a-a-h}{2} \right)\sin \left( \dfrac{a+a+h}{2} \right)}{\cos \left( a+h \right)\cos a} \right]$
or
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\left[ \dfrac{-2\sin \left( \dfrac{-h}{2} \right)\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a} \right]$
We know $\sin \left( -x \right)=-\sin x$, hence above relation can be given as
RHD$\underset{h\to 0}{\mathop{=\lim }}\,\dfrac{2}{h}\sin \left( \dfrac{h}{2} \right)\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
or
$\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
Now, we can use the relation $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$ to simplify the above equation. Hence, we get
RHD$=\underset{h\to 0}{\mathop{\lim }}\,\left( 1 \right)\dfrac{\sin \left( \dfrac{2a+h}{2} \right)}{\cos \left( a+h \right)\cos a}$
On putting limits to the above equation, we get
RHD$=\dfrac{\sin a}{\cos a\cos a}=\sec a\tan a$
Hence,
RHD$=\sec a\tan a$ ………………………………………………………………… (v)
Now, we can observe that LHD, RHD at point ‘a’ and value of derivative of $h\left( x \right)$ at point a, all are equal to $\sec a\tan a$. Hence, from equation (iii), we get to know that $h\left( x \right)=\sec x$ is differentiable at $x=a$ where $a\ne \left( 2n+1 \right)\dfrac{\pi }{2}$.
NOTE: Don’t confuse with the statement $x\ne \left( 2n+1 \right)\dfrac{\pi }{2}$ or a is not an odd multiple of$\dfrac{\pi }{2}$ . These are given because we can not put $x=\left( 2n+1 \right)\dfrac{\pi }{2}$ to function $\sec x$ as it will give positive infinite or negative for $\left( 2n+1 \right){{\dfrac{\pi }{2}}^{-}}$ or $\left( 2n+1 \right){{\dfrac{\pi }{2}}^{+}}$.
That’s why these statements are used in question.
We can use the L'Hospital Rule while calculating LHD and RHD values as both are of the form $\dfrac{0}{0}$. So, we don’t need to use any trigonometric identity for solving LHD and RHD if we use L’Hospital Rule.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
