
If $a\ne 6,b,c$ satisfy $\left| \begin{matrix}
a & 2b & 2c \\
3 & b & c \\
4 & a & b \\
\end{matrix} \right|=0$, then $abc=$
A. $a+b+c$
B. 0
C. ${{b}^{3}}$
D. $ab+b-c$
Answer
465k+ views
Hint: To solve this question we will use the properties of matrix. We will first simplify the given matrix by using the operations of matrix and determinants then we put the values obtained equal to zero, then we will find the value of $abc$ by simplifying the obtained equation.
Complete step by step solution:
We have been given that $a\ne 6,b,c$ satisfy $\left| \begin{matrix}
a & 2b & 2c \\
3 & b & c \\
4 & a & b \\
\end{matrix} \right|=0$.
We have to find the value of $abc$.
Now, let us first solve the given matrix. We know that we can solve the given matrix by multiplying the element by $2\times 2$ determinant. The determinant of a $3\times 3$ matrix is calculated for a matrix having 3 rows and 3 columns. Then we will get
$\Rightarrow a\left( b\times b-a\times c \right)-2b\left( 3\times b-4\times c \right)+2c\left( 3\times a-4\times b \right)$
Now, simplifying the above obtained equation we will get
$\begin{align}
& \Rightarrow a\left( {{b}^{2}}-ac \right)-2b\left( 3b-4c \right)+2c\left( 3a-4b \right) \\
& \Rightarrow a{{b}^{2}}-{{a}^{2}}c-6{{b}^{2}}+8bc+6ac-8bc \\
& \Rightarrow a{{b}^{2}}-{{a}^{2}}c-6{{b}^{2}}+6ac \\
\end{align}$
We have given that $a\ne 6,b,c$ satisfy matrix value equal to zero.
Then we will get
$\begin{align}
& \Rightarrow a{{b}^{2}}-{{a}^{2}}c-6{{b}^{2}}+6ac=0 \\
& \Rightarrow a{{b}^{2}}-6{{b}^{2}}-{{a}^{2}}c+6ac=0 \\
& \Rightarrow {{b}^{2}}\left( a-6 \right)-ac\left( a-6 \right)=0 \\
& \Rightarrow \left( a-6 \right)\left( {{b}^{2}}-ac \right)=0 \\
\end{align}$
If $a\ne 6$ then $\left( {{b}^{2}}-ac \right)=0$ then simplifying the obtained equation we will get
$\begin{align}
& \Rightarrow {{b}^{2}}-ac=0 \\
& \Rightarrow {{b}^{2}}=ac \\
& \Rightarrow abc={{b}^{3}} \\
\end{align}$
Hence we get the value of $abc$ as ${{b}^{3}}$.
Option C is the correct answer.
Note:
Students must remember the condition given in the question that $a\ne 6$. If we consider the factor $a-6=0$ then we will get the value $a=6$. So we need to ignore the factor. In matrices, determinants are the special numbers calculated from the square matrix. Square matrix should have an equal number of rows and columns.
Complete step by step solution:
We have been given that $a\ne 6,b,c$ satisfy $\left| \begin{matrix}
a & 2b & 2c \\
3 & b & c \\
4 & a & b \\
\end{matrix} \right|=0$.
We have to find the value of $abc$.
Now, let us first solve the given matrix. We know that we can solve the given matrix by multiplying the element by $2\times 2$ determinant. The determinant of a $3\times 3$ matrix is calculated for a matrix having 3 rows and 3 columns. Then we will get
$\Rightarrow a\left( b\times b-a\times c \right)-2b\left( 3\times b-4\times c \right)+2c\left( 3\times a-4\times b \right)$
Now, simplifying the above obtained equation we will get
$\begin{align}
& \Rightarrow a\left( {{b}^{2}}-ac \right)-2b\left( 3b-4c \right)+2c\left( 3a-4b \right) \\
& \Rightarrow a{{b}^{2}}-{{a}^{2}}c-6{{b}^{2}}+8bc+6ac-8bc \\
& \Rightarrow a{{b}^{2}}-{{a}^{2}}c-6{{b}^{2}}+6ac \\
\end{align}$
We have given that $a\ne 6,b,c$ satisfy matrix value equal to zero.
Then we will get
$\begin{align}
& \Rightarrow a{{b}^{2}}-{{a}^{2}}c-6{{b}^{2}}+6ac=0 \\
& \Rightarrow a{{b}^{2}}-6{{b}^{2}}-{{a}^{2}}c+6ac=0 \\
& \Rightarrow {{b}^{2}}\left( a-6 \right)-ac\left( a-6 \right)=0 \\
& \Rightarrow \left( a-6 \right)\left( {{b}^{2}}-ac \right)=0 \\
\end{align}$
If $a\ne 6$ then $\left( {{b}^{2}}-ac \right)=0$ then simplifying the obtained equation we will get
$\begin{align}
& \Rightarrow {{b}^{2}}-ac=0 \\
& \Rightarrow {{b}^{2}}=ac \\
& \Rightarrow abc={{b}^{3}} \\
\end{align}$
Hence we get the value of $abc$ as ${{b}^{3}}$.
Option C is the correct answer.
Note:
Students must remember the condition given in the question that $a\ne 6$. If we consider the factor $a-6=0$ then we will get the value $a=6$. So we need to ignore the factor. In matrices, determinants are the special numbers calculated from the square matrix. Square matrix should have an equal number of rows and columns.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
