
If $a\ne 6,b,c$ satisfy $\left| \begin{matrix}
a & 2b & 2c \\
3 & b & c \\
4 & a & b \\
\end{matrix} \right|=0$, then $abc=$
A. $a+b+c$
B. 0
C. ${{b}^{3}}$
D. $ab+b-c$
Answer
552k+ views
Hint: To solve this question we will use the properties of matrix. We will first simplify the given matrix by using the operations of matrix and determinants then we put the values obtained equal to zero, then we will find the value of $abc$ by simplifying the obtained equation.
Complete step by step solution:
We have been given that $a\ne 6,b,c$ satisfy $\left| \begin{matrix}
a & 2b & 2c \\
3 & b & c \\
4 & a & b \\
\end{matrix} \right|=0$.
We have to find the value of $abc$.
Now, let us first solve the given matrix. We know that we can solve the given matrix by multiplying the element by $2\times 2$ determinant. The determinant of a $3\times 3$ matrix is calculated for a matrix having 3 rows and 3 columns. Then we will get
$\Rightarrow a\left( b\times b-a\times c \right)-2b\left( 3\times b-4\times c \right)+2c\left( 3\times a-4\times b \right)$
Now, simplifying the above obtained equation we will get
$\begin{align}
& \Rightarrow a\left( {{b}^{2}}-ac \right)-2b\left( 3b-4c \right)+2c\left( 3a-4b \right) \\
& \Rightarrow a{{b}^{2}}-{{a}^{2}}c-6{{b}^{2}}+8bc+6ac-8bc \\
& \Rightarrow a{{b}^{2}}-{{a}^{2}}c-6{{b}^{2}}+6ac \\
\end{align}$
We have given that $a\ne 6,b,c$ satisfy matrix value equal to zero.
Then we will get
$\begin{align}
& \Rightarrow a{{b}^{2}}-{{a}^{2}}c-6{{b}^{2}}+6ac=0 \\
& \Rightarrow a{{b}^{2}}-6{{b}^{2}}-{{a}^{2}}c+6ac=0 \\
& \Rightarrow {{b}^{2}}\left( a-6 \right)-ac\left( a-6 \right)=0 \\
& \Rightarrow \left( a-6 \right)\left( {{b}^{2}}-ac \right)=0 \\
\end{align}$
If $a\ne 6$ then $\left( {{b}^{2}}-ac \right)=0$ then simplifying the obtained equation we will get
$\begin{align}
& \Rightarrow {{b}^{2}}-ac=0 \\
& \Rightarrow {{b}^{2}}=ac \\
& \Rightarrow abc={{b}^{3}} \\
\end{align}$
Hence we get the value of $abc$ as ${{b}^{3}}$.
Option C is the correct answer.
Note:
Students must remember the condition given in the question that $a\ne 6$. If we consider the factor $a-6=0$ then we will get the value $a=6$. So we need to ignore the factor. In matrices, determinants are the special numbers calculated from the square matrix. Square matrix should have an equal number of rows and columns.
Complete step by step solution:
We have been given that $a\ne 6,b,c$ satisfy $\left| \begin{matrix}
a & 2b & 2c \\
3 & b & c \\
4 & a & b \\
\end{matrix} \right|=0$.
We have to find the value of $abc$.
Now, let us first solve the given matrix. We know that we can solve the given matrix by multiplying the element by $2\times 2$ determinant. The determinant of a $3\times 3$ matrix is calculated for a matrix having 3 rows and 3 columns. Then we will get
$\Rightarrow a\left( b\times b-a\times c \right)-2b\left( 3\times b-4\times c \right)+2c\left( 3\times a-4\times b \right)$
Now, simplifying the above obtained equation we will get
$\begin{align}
& \Rightarrow a\left( {{b}^{2}}-ac \right)-2b\left( 3b-4c \right)+2c\left( 3a-4b \right) \\
& \Rightarrow a{{b}^{2}}-{{a}^{2}}c-6{{b}^{2}}+8bc+6ac-8bc \\
& \Rightarrow a{{b}^{2}}-{{a}^{2}}c-6{{b}^{2}}+6ac \\
\end{align}$
We have given that $a\ne 6,b,c$ satisfy matrix value equal to zero.
Then we will get
$\begin{align}
& \Rightarrow a{{b}^{2}}-{{a}^{2}}c-6{{b}^{2}}+6ac=0 \\
& \Rightarrow a{{b}^{2}}-6{{b}^{2}}-{{a}^{2}}c+6ac=0 \\
& \Rightarrow {{b}^{2}}\left( a-6 \right)-ac\left( a-6 \right)=0 \\
& \Rightarrow \left( a-6 \right)\left( {{b}^{2}}-ac \right)=0 \\
\end{align}$
If $a\ne 6$ then $\left( {{b}^{2}}-ac \right)=0$ then simplifying the obtained equation we will get
$\begin{align}
& \Rightarrow {{b}^{2}}-ac=0 \\
& \Rightarrow {{b}^{2}}=ac \\
& \Rightarrow abc={{b}^{3}} \\
\end{align}$
Hence we get the value of $abc$ as ${{b}^{3}}$.
Option C is the correct answer.
Note:
Students must remember the condition given in the question that $a\ne 6$. If we consider the factor $a-6=0$ then we will get the value $a=6$. So we need to ignore the factor. In matrices, determinants are the special numbers calculated from the square matrix. Square matrix should have an equal number of rows and columns.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

