
If $a\ne 6,b,c$ satisfy $\left| \begin{matrix}
a & 2b & 2c \\
3 & b & c \\
4 & a & b \\
\end{matrix} \right|=0$, then $abc=$
A. $a+b+c$
B. 0
C. ${{b}^{3}}$
D. $ab+b-c$
Answer
538.2k+ views
Hint: To solve this question we will use the properties of matrix. We will first simplify the given matrix by using the operations of matrix and determinants then we put the values obtained equal to zero, then we will find the value of $abc$ by simplifying the obtained equation.
Complete step by step solution:
We have been given that $a\ne 6,b,c$ satisfy $\left| \begin{matrix}
a & 2b & 2c \\
3 & b & c \\
4 & a & b \\
\end{matrix} \right|=0$.
We have to find the value of $abc$.
Now, let us first solve the given matrix. We know that we can solve the given matrix by multiplying the element by $2\times 2$ determinant. The determinant of a $3\times 3$ matrix is calculated for a matrix having 3 rows and 3 columns. Then we will get
$\Rightarrow a\left( b\times b-a\times c \right)-2b\left( 3\times b-4\times c \right)+2c\left( 3\times a-4\times b \right)$
Now, simplifying the above obtained equation we will get
$\begin{align}
& \Rightarrow a\left( {{b}^{2}}-ac \right)-2b\left( 3b-4c \right)+2c\left( 3a-4b \right) \\
& \Rightarrow a{{b}^{2}}-{{a}^{2}}c-6{{b}^{2}}+8bc+6ac-8bc \\
& \Rightarrow a{{b}^{2}}-{{a}^{2}}c-6{{b}^{2}}+6ac \\
\end{align}$
We have given that $a\ne 6,b,c$ satisfy matrix value equal to zero.
Then we will get
$\begin{align}
& \Rightarrow a{{b}^{2}}-{{a}^{2}}c-6{{b}^{2}}+6ac=0 \\
& \Rightarrow a{{b}^{2}}-6{{b}^{2}}-{{a}^{2}}c+6ac=0 \\
& \Rightarrow {{b}^{2}}\left( a-6 \right)-ac\left( a-6 \right)=0 \\
& \Rightarrow \left( a-6 \right)\left( {{b}^{2}}-ac \right)=0 \\
\end{align}$
If $a\ne 6$ then $\left( {{b}^{2}}-ac \right)=0$ then simplifying the obtained equation we will get
$\begin{align}
& \Rightarrow {{b}^{2}}-ac=0 \\
& \Rightarrow {{b}^{2}}=ac \\
& \Rightarrow abc={{b}^{3}} \\
\end{align}$
Hence we get the value of $abc$ as ${{b}^{3}}$.
Option C is the correct answer.
Note:
Students must remember the condition given in the question that $a\ne 6$. If we consider the factor $a-6=0$ then we will get the value $a=6$. So we need to ignore the factor. In matrices, determinants are the special numbers calculated from the square matrix. Square matrix should have an equal number of rows and columns.
Complete step by step solution:
We have been given that $a\ne 6,b,c$ satisfy $\left| \begin{matrix}
a & 2b & 2c \\
3 & b & c \\
4 & a & b \\
\end{matrix} \right|=0$.
We have to find the value of $abc$.
Now, let us first solve the given matrix. We know that we can solve the given matrix by multiplying the element by $2\times 2$ determinant. The determinant of a $3\times 3$ matrix is calculated for a matrix having 3 rows and 3 columns. Then we will get
$\Rightarrow a\left( b\times b-a\times c \right)-2b\left( 3\times b-4\times c \right)+2c\left( 3\times a-4\times b \right)$
Now, simplifying the above obtained equation we will get
$\begin{align}
& \Rightarrow a\left( {{b}^{2}}-ac \right)-2b\left( 3b-4c \right)+2c\left( 3a-4b \right) \\
& \Rightarrow a{{b}^{2}}-{{a}^{2}}c-6{{b}^{2}}+8bc+6ac-8bc \\
& \Rightarrow a{{b}^{2}}-{{a}^{2}}c-6{{b}^{2}}+6ac \\
\end{align}$
We have given that $a\ne 6,b,c$ satisfy matrix value equal to zero.
Then we will get
$\begin{align}
& \Rightarrow a{{b}^{2}}-{{a}^{2}}c-6{{b}^{2}}+6ac=0 \\
& \Rightarrow a{{b}^{2}}-6{{b}^{2}}-{{a}^{2}}c+6ac=0 \\
& \Rightarrow {{b}^{2}}\left( a-6 \right)-ac\left( a-6 \right)=0 \\
& \Rightarrow \left( a-6 \right)\left( {{b}^{2}}-ac \right)=0 \\
\end{align}$
If $a\ne 6$ then $\left( {{b}^{2}}-ac \right)=0$ then simplifying the obtained equation we will get
$\begin{align}
& \Rightarrow {{b}^{2}}-ac=0 \\
& \Rightarrow {{b}^{2}}=ac \\
& \Rightarrow abc={{b}^{3}} \\
\end{align}$
Hence we get the value of $abc$ as ${{b}^{3}}$.
Option C is the correct answer.
Note:
Students must remember the condition given in the question that $a\ne 6$. If we consider the factor $a-6=0$ then we will get the value $a=6$. So we need to ignore the factor. In matrices, determinants are the special numbers calculated from the square matrix. Square matrix should have an equal number of rows and columns.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

