
If ${a_n} = 3 - 4n,$then show that ${a_1},{a_2},{a_3}.......$ form an A.P. Also find ${S_{20}}$.
Answer
592.8k+ views
Hint: We will find the common difference of the series by taking any two consecutive terms let us say ${{\text{r}}^{{\text{th}}}}$ and ${(r - 1)^{th}}$ terms i.e., we’ll find the value of ${a_r} - {a_{r - 1}}$, if it comes out to be constant the given series will form an A.P. as an A.P. have a constant common difference throughout the series.
To find the sum of the first 20 terms of the series we’ll use the formula of the sum of first n terms of an A.P.
Complete step by step solution:
Given data: ${a_n} = 3 - 4n,$
Let a random term and its preceding term to find the common difference of the series
Let's take ${{\text{r}}^{{\text{th}}}}$ and ${(r - 1)^{th}}$ terms
$
{{\text{a}}_{\text{r}}}{\text{ = 3 - 4r}} \\
\Rightarrow {{\text{a}}_{{\text{r - 1}}}}{\text{ = 3 - 4(r - 1)}} \\
\Rightarrow {{\text{a}}_{{\text{r - 1}}}}{\text{ = 3 - 4r + 4}} \\
\Rightarrow {{\text{a}}_{{\text{r - 1}}}}{\text{ = 7 - 4r}} \\
$
Now common difference say d,
\[
{\text{d = }}{{\text{a}}_{\text{r}}}{\text{ - }}{{\text{a}}_{{\text{r - 1}}}} \\
\Rightarrow {\text{d = 3 - 4r - (7 - 4r)}} \\
\Rightarrow {\text{d = 3 - 4r - 7 + 4r}} \\
\Rightarrow {\text{d = - 4}} \\
\]
Putting the values of ${a_r}$ and ${a_{r - 1}}$
Since the common difference(d) is constant, it can be said that ${a_1},{a_2},{a_3}.......$ will form an A.P.
Using ${a_n} = 3 - 4n,$
Putting \[n = 1\],
$
{{\text{a}}_{\text{1}}}{\text{ = 3 - 4(1)}} \\
\therefore {{\text{a}}_{\text{1}}}{\text{ = - 1}} \\
$
Putting \[n = 2\],
$
{{\text{a}}_{\text{2}}}{\text{ = 3 - 4(2)}} \\
\therefore {{\text{a}}_{\text{2}}}{\text{ = - 5}} \\
$
Putting \[n = 3\],
$
{a_3} = 3 - 4(3) \\
\therefore {a_3} = - 9 \\
$
Therefore, the A.P. will be -1,-5,-9……….
Now, Sum of first n terms of an A.P. i.e. ${S_n}$is given by,
${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$
Using this formula, we get,
${S_{20}} = \dfrac{{20}}{2}\left[ {2{a_1} + \left( {20 - 1} \right)( - 4)} \right]$
Using ${a_n} = 3 - 4n,$we get,
$
= 10\left[ {2(3 - 4(1)) + 19( - 4)} \right] \\
= 10\left[ {2(3 - 4) - 76} \right] \\
= 10\left[ {2( - 1) - 76} \right] \\
= 10\left[ { - 2 - 76} \right] \\
= 10\left[ { - 78} \right] \\
= - 780 \\
$
Therefore,
${S_{20}} = - 780$
Hence, the AP is -1,-5,-9,…….. and ${S_{20}} = - 780$
Note: We can also find the value of ${S_{20}}$ using the alternative formula for the sum of first n terms of an A.P. can also be written as
${S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]$
Using ${a_n} = 3 - 4n,$we get
\[
{S_{20}} = \dfrac{{20}}{2}\left[ {{a_1} + {a_{20}}} \right] \\
= \dfrac{{20}}{2}\left[ {3 - 4(1) + 3 - 4(20)} \right] \\
= 10\left[ {3 - 4 + 3 - 80} \right] \\
= 10\left[ {6 - 84} \right] \\
= 10\left[ { - 78} \right] \\
= - 780 \\
\]
To find the sum of the first 20 terms of the series we’ll use the formula of the sum of first n terms of an A.P.
Complete step by step solution:
Given data: ${a_n} = 3 - 4n,$
Let a random term and its preceding term to find the common difference of the series
Let's take ${{\text{r}}^{{\text{th}}}}$ and ${(r - 1)^{th}}$ terms
$
{{\text{a}}_{\text{r}}}{\text{ = 3 - 4r}} \\
\Rightarrow {{\text{a}}_{{\text{r - 1}}}}{\text{ = 3 - 4(r - 1)}} \\
\Rightarrow {{\text{a}}_{{\text{r - 1}}}}{\text{ = 3 - 4r + 4}} \\
\Rightarrow {{\text{a}}_{{\text{r - 1}}}}{\text{ = 7 - 4r}} \\
$
Now common difference say d,
\[
{\text{d = }}{{\text{a}}_{\text{r}}}{\text{ - }}{{\text{a}}_{{\text{r - 1}}}} \\
\Rightarrow {\text{d = 3 - 4r - (7 - 4r)}} \\
\Rightarrow {\text{d = 3 - 4r - 7 + 4r}} \\
\Rightarrow {\text{d = - 4}} \\
\]
Putting the values of ${a_r}$ and ${a_{r - 1}}$
Since the common difference(d) is constant, it can be said that ${a_1},{a_2},{a_3}.......$ will form an A.P.
Using ${a_n} = 3 - 4n,$
Putting \[n = 1\],
$
{{\text{a}}_{\text{1}}}{\text{ = 3 - 4(1)}} \\
\therefore {{\text{a}}_{\text{1}}}{\text{ = - 1}} \\
$
Putting \[n = 2\],
$
{{\text{a}}_{\text{2}}}{\text{ = 3 - 4(2)}} \\
\therefore {{\text{a}}_{\text{2}}}{\text{ = - 5}} \\
$
Putting \[n = 3\],
$
{a_3} = 3 - 4(3) \\
\therefore {a_3} = - 9 \\
$
Therefore, the A.P. will be -1,-5,-9……….
Now, Sum of first n terms of an A.P. i.e. ${S_n}$is given by,
${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$
Using this formula, we get,
${S_{20}} = \dfrac{{20}}{2}\left[ {2{a_1} + \left( {20 - 1} \right)( - 4)} \right]$
Using ${a_n} = 3 - 4n,$we get,
$
= 10\left[ {2(3 - 4(1)) + 19( - 4)} \right] \\
= 10\left[ {2(3 - 4) - 76} \right] \\
= 10\left[ {2( - 1) - 76} \right] \\
= 10\left[ { - 2 - 76} \right] \\
= 10\left[ { - 78} \right] \\
= - 780 \\
$
Therefore,
${S_{20}} = - 780$
Hence, the AP is -1,-5,-9,…….. and ${S_{20}} = - 780$
Note: We can also find the value of ${S_{20}}$ using the alternative formula for the sum of first n terms of an A.P. can also be written as
${S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]$
Using ${a_n} = 3 - 4n,$we get
\[
{S_{20}} = \dfrac{{20}}{2}\left[ {{a_1} + {a_{20}}} \right] \\
= \dfrac{{20}}{2}\left[ {3 - 4(1) + 3 - 4(20)} \right] \\
= 10\left[ {3 - 4 + 3 - 80} \right] \\
= 10\left[ {6 - 84} \right] \\
= 10\left[ { - 78} \right] \\
= - 780 \\
\]
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

