 Questions & Answers    Question Answers

# If $\alpha ,\beta ,\gamma$ are the roots of the equation ${x^3} + ax + b = 0$, then what is the value of $\dfrac{{{\alpha ^3} + {\beta ^3} + {\gamma ^3}}}{{{\alpha ^2} + {\beta ^2} + {\gamma ^2}}}$.${\text{A}}{\text{. }}\dfrac{{3b}}{{2a}} \\ {\text{B}}{\text{. }}\dfrac{{ - 3b}}{{2a}} \\ {\text{C}}{\text{. }}3b \\ {\text{D}}{\text{. }}2a \\$  Answer Verified
Hint- Here, we will proceed by using the formulas which are $\alpha + \beta + \gamma = \dfrac{{ - \left( {{\text{Coefficient of }}{x^2}} \right)}}{{{\text{Coefficient of }}{x^3}}}$, $\alpha \beta + \beta \gamma + \alpha \gamma = \dfrac{{{\text{Coefficient of }}x}}{{{\text{Coefficient of }}{x^3}}}$ and $\alpha \beta \gamma = \dfrac{{ - \left( {{\text{Constant term}}} \right)}}{{{\text{Coefficient of }}{x^3}}}$ for any general cubic equation having three roots as $\alpha ,\beta ,\gamma$

“Complete step-by-step answer:”
Given cubic equation is ${x^3} + ax + b = 0{\text{ }} \to (1{\text{)}}$
For any general cubic equation $c{x^3} + d{x^2} + ex + f = 0{\text{ }} \to {\text{(2)}}$ which have three roots as $\alpha ,\beta ,\gamma$,
Sum of the roots, $\alpha + \beta + \gamma = \dfrac{{ - \left( {{\text{Coefficient of }}{x^2}} \right)}}{{{\text{Coefficient of }}{x^3}}} = \dfrac{{ - d}}{c}{\text{ }} \to {\text{(3)}}$
Sum of product of the roots taken two at a time, $\alpha \beta + \beta \gamma + \alpha \gamma = \dfrac{{{\text{Coefficient of }}x}}{{{\text{Coefficient of }}{x^3}}} = \dfrac{e}{c}{\text{ }} \to {\text{(4)}}$
Product of roots, $\alpha \beta \gamma = \dfrac{{ - \left( {{\text{Constant term}}} \right)}}{{{\text{Coefficient of }}{x^3}}} = \dfrac{{ - f}}{c}{\text{ }} \to {\text{(5)}}$
By comparing the given cubic equation (i.e., equation (1)) with the general cubic equation (i.e., equation (2)), we get
c=1, d=0, e=a and f=b
Putting the above obtained values, equations (3), (4) and (5) becomes
Sum of the roots, $\alpha + \beta + \gamma = \dfrac{0}{1} = 0$
Sum of product of the roots taken two at a time, $\alpha \beta + \beta \gamma + \alpha \gamma = \dfrac{a}{1} = a$
Product of roots, $\alpha \beta \gamma = \dfrac{{ - b}}{1} = - b$
As we know that ${x^3} + {y^3} + {z^3} - 3xyz = \left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - xz} \right)$
So, ${\alpha ^3} + {\beta ^3} + {\gamma ^3} - 3\alpha \beta \gamma = \left( {\alpha + \beta + \gamma } \right)\left( {{\alpha ^2} + {\beta ^2} + {\gamma ^2} - \alpha \beta - \beta \gamma - \alpha \gamma } \right)$
But $\alpha + \beta + \gamma = 0$
$\Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} - 3\alpha \beta \gamma = \left( 0 \right)\left( {{\alpha ^2} + {\beta ^2} + {\gamma ^2} - \alpha \beta - \beta \gamma - \alpha \gamma } \right) \\ \Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} - 3\alpha \beta \gamma = 0 \\ \Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} = 3\alpha \beta \gamma \\$
As, $\alpha \beta \gamma = - b$
$\Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} = 3\left( { - b} \right) \\ \Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} = - 3b \to {\text{(6)}} \\$
Also, ${\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2xz \\ \Rightarrow {x^2} + {y^2} + {z^2} = {\left( {x + y + z} \right)^2} - 2\left( {xy + yz + xz} \right) \\$
$\Rightarrow {\alpha ^2} + {\beta ^2} + {\gamma ^2} = {\left( {\alpha + \beta + \gamma } \right)^2} - 2\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)$
But $\alpha + \beta + \gamma = 0$ and $\alpha \beta + \beta \gamma + \alpha \gamma = a$
$\Rightarrow {\alpha ^2} + {\beta ^2} + {\gamma ^2} = {\left( 0 \right)^2} - 2\left( a \right) \\ \Rightarrow {\alpha ^2} + {\beta ^2} + {\gamma ^2} = - 2a{\text{ }} \to {\text{(7)}} \\$
Using equations (6) and (7), we get
$\dfrac{{{\alpha ^3} + {\beta ^3} + {\gamma ^3}}}{{{\alpha ^2} + {\beta ^2} + {\gamma ^2}}} = \dfrac{{ - 3b}}{{ - 2a}} = \dfrac{{3b}}{{2a}}$
Hence, option A is correct.

Note- In this particular problem, we have converted the expression $\dfrac{{{\alpha ^3} + {\beta ^3} + {\gamma ^3}}}{{{\alpha ^2} + {\beta ^2} + {\gamma ^2}}}$ whose value is required in terms of the known values which are $\left( {\alpha + \beta + \gamma } \right)$, $\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)$ and $\alpha \beta \gamma$ which can be easily obtained with the help of the known formulas for any general cubic equation.
Bookmark added to your notes.
View Notes
Roots of Polynomial Equation  What are the Domains of the Earth  Gamma Distribution  Nature of Roots of a Quadratic Equation  What are the Challenges of Democracy?  What are the Functions of the Human Skeletal System?  Beta Function  Beta Distribution  What if the Earth Stopped Spinning?  Failures are The Pillars of Success Essay  