Answer
Verified
494.4k+ views
Hint- Here, we will proceed by using the formulas which are $\alpha + \beta + \gamma = \dfrac{{ - \left( {{\text{Coefficient of }}{x^2}} \right)}}{{{\text{Coefficient of }}{x^3}}}$, $\alpha \beta + \beta \gamma + \alpha \gamma = \dfrac{{{\text{Coefficient of }}x}}{{{\text{Coefficient of }}{x^3}}}$ and $\alpha \beta \gamma = \dfrac{{ - \left( {{\text{Constant term}}} \right)}}{{{\text{Coefficient of }}{x^3}}}$ for any general cubic equation having three roots as $\alpha ,\beta ,\gamma $
“Complete step-by-step answer:”
Given cubic equation is ${x^3} + ax + b = 0{\text{ }} \to (1{\text{)}}$
For any general cubic equation $c{x^3} + d{x^2} + ex + f = 0{\text{ }} \to {\text{(2)}}$ which have three roots as $\alpha ,\beta ,\gamma $,
Sum of the roots, $\alpha + \beta + \gamma = \dfrac{{ - \left( {{\text{Coefficient of }}{x^2}} \right)}}{{{\text{Coefficient of }}{x^3}}} = \dfrac{{ - d}}{c}{\text{ }} \to {\text{(3)}}$
Sum of product of the roots taken two at a time, $\alpha \beta + \beta \gamma + \alpha \gamma = \dfrac{{{\text{Coefficient of }}x}}{{{\text{Coefficient of }}{x^3}}} = \dfrac{e}{c}{\text{ }} \to {\text{(4)}}$
Product of roots, $\alpha \beta \gamma = \dfrac{{ - \left( {{\text{Constant term}}} \right)}}{{{\text{Coefficient of }}{x^3}}} = \dfrac{{ - f}}{c}{\text{ }} \to {\text{(5)}}$
By comparing the given cubic equation (i.e., equation (1)) with the general cubic equation (i.e., equation (2)), we get
c=1, d=0, e=a and f=b
Putting the above obtained values, equations (3), (4) and (5) becomes
Sum of the roots, $\alpha + \beta + \gamma = \dfrac{0}{1} = 0$
Sum of product of the roots taken two at a time, $\alpha \beta + \beta \gamma + \alpha \gamma = \dfrac{a}{1} = a$
Product of roots, \[\alpha \beta \gamma = \dfrac{{ - b}}{1} = - b\]
As we know that ${x^3} + {y^3} + {z^3} - 3xyz = \left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - xz} \right)$
So, ${\alpha ^3} + {\beta ^3} + {\gamma ^3} - 3\alpha \beta \gamma = \left( {\alpha + \beta + \gamma } \right)\left( {{\alpha ^2} + {\beta ^2} + {\gamma ^2} - \alpha \beta - \beta \gamma - \alpha \gamma } \right)$
But $\alpha + \beta + \gamma = 0$
$
\Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} - 3\alpha \beta \gamma = \left( 0 \right)\left( {{\alpha ^2} + {\beta ^2} + {\gamma ^2} - \alpha \beta - \beta \gamma - \alpha \gamma } \right) \\
\Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} - 3\alpha \beta \gamma = 0 \\
\Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} = 3\alpha \beta \gamma \\
$
As, \[\alpha \beta \gamma = - b\]
$
\Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} = 3\left( { - b} \right) \\
\Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} = - 3b \to {\text{(6)}} \\
$
Also, $
{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2xz \\
\Rightarrow {x^2} + {y^2} + {z^2} = {\left( {x + y + z} \right)^2} - 2\left( {xy + yz + xz} \right) \\
$
$ \Rightarrow {\alpha ^2} + {\beta ^2} + {\gamma ^2} = {\left( {\alpha + \beta + \gamma } \right)^2} - 2\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)$
But $\alpha + \beta + \gamma = 0$ and $\alpha \beta + \beta \gamma + \alpha \gamma = a$
$
\Rightarrow {\alpha ^2} + {\beta ^2} + {\gamma ^2} = {\left( 0 \right)^2} - 2\left( a \right) \\
\Rightarrow {\alpha ^2} + {\beta ^2} + {\gamma ^2} = - 2a{\text{ }} \to {\text{(7)}} \\
$
Using equations (6) and (7), we get
$\dfrac{{{\alpha ^3} + {\beta ^3} + {\gamma ^3}}}{{{\alpha ^2} + {\beta ^2} + {\gamma ^2}}} = \dfrac{{ - 3b}}{{ - 2a}} = \dfrac{{3b}}{{2a}}$
Hence, option A is correct.
Note- In this particular problem, we have converted the expression $\dfrac{{{\alpha ^3} + {\beta ^3} + {\gamma ^3}}}{{{\alpha ^2} + {\beta ^2} + {\gamma ^2}}}$ whose value is required in terms of the known values which are $\left( {\alpha + \beta + \gamma } \right)$, $\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)$ and \[\alpha \beta \gamma \] which can be easily obtained with the help of the known formulas for any general cubic equation.
“Complete step-by-step answer:”
Given cubic equation is ${x^3} + ax + b = 0{\text{ }} \to (1{\text{)}}$
For any general cubic equation $c{x^3} + d{x^2} + ex + f = 0{\text{ }} \to {\text{(2)}}$ which have three roots as $\alpha ,\beta ,\gamma $,
Sum of the roots, $\alpha + \beta + \gamma = \dfrac{{ - \left( {{\text{Coefficient of }}{x^2}} \right)}}{{{\text{Coefficient of }}{x^3}}} = \dfrac{{ - d}}{c}{\text{ }} \to {\text{(3)}}$
Sum of product of the roots taken two at a time, $\alpha \beta + \beta \gamma + \alpha \gamma = \dfrac{{{\text{Coefficient of }}x}}{{{\text{Coefficient of }}{x^3}}} = \dfrac{e}{c}{\text{ }} \to {\text{(4)}}$
Product of roots, $\alpha \beta \gamma = \dfrac{{ - \left( {{\text{Constant term}}} \right)}}{{{\text{Coefficient of }}{x^3}}} = \dfrac{{ - f}}{c}{\text{ }} \to {\text{(5)}}$
By comparing the given cubic equation (i.e., equation (1)) with the general cubic equation (i.e., equation (2)), we get
c=1, d=0, e=a and f=b
Putting the above obtained values, equations (3), (4) and (5) becomes
Sum of the roots, $\alpha + \beta + \gamma = \dfrac{0}{1} = 0$
Sum of product of the roots taken two at a time, $\alpha \beta + \beta \gamma + \alpha \gamma = \dfrac{a}{1} = a$
Product of roots, \[\alpha \beta \gamma = \dfrac{{ - b}}{1} = - b\]
As we know that ${x^3} + {y^3} + {z^3} - 3xyz = \left( {x + y + z} \right)\left( {{x^2} + {y^2} + {z^2} - xy - yz - xz} \right)$
So, ${\alpha ^3} + {\beta ^3} + {\gamma ^3} - 3\alpha \beta \gamma = \left( {\alpha + \beta + \gamma } \right)\left( {{\alpha ^2} + {\beta ^2} + {\gamma ^2} - \alpha \beta - \beta \gamma - \alpha \gamma } \right)$
But $\alpha + \beta + \gamma = 0$
$
\Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} - 3\alpha \beta \gamma = \left( 0 \right)\left( {{\alpha ^2} + {\beta ^2} + {\gamma ^2} - \alpha \beta - \beta \gamma - \alpha \gamma } \right) \\
\Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} - 3\alpha \beta \gamma = 0 \\
\Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} = 3\alpha \beta \gamma \\
$
As, \[\alpha \beta \gamma = - b\]
$
\Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} = 3\left( { - b} \right) \\
\Rightarrow {\alpha ^3} + {\beta ^3} + {\gamma ^3} = - 3b \to {\text{(6)}} \\
$
Also, $
{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2xy + 2yz + 2xz \\
\Rightarrow {x^2} + {y^2} + {z^2} = {\left( {x + y + z} \right)^2} - 2\left( {xy + yz + xz} \right) \\
$
$ \Rightarrow {\alpha ^2} + {\beta ^2} + {\gamma ^2} = {\left( {\alpha + \beta + \gamma } \right)^2} - 2\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)$
But $\alpha + \beta + \gamma = 0$ and $\alpha \beta + \beta \gamma + \alpha \gamma = a$
$
\Rightarrow {\alpha ^2} + {\beta ^2} + {\gamma ^2} = {\left( 0 \right)^2} - 2\left( a \right) \\
\Rightarrow {\alpha ^2} + {\beta ^2} + {\gamma ^2} = - 2a{\text{ }} \to {\text{(7)}} \\
$
Using equations (6) and (7), we get
$\dfrac{{{\alpha ^3} + {\beta ^3} + {\gamma ^3}}}{{{\alpha ^2} + {\beta ^2} + {\gamma ^2}}} = \dfrac{{ - 3b}}{{ - 2a}} = \dfrac{{3b}}{{2a}}$
Hence, option A is correct.
Note- In this particular problem, we have converted the expression $\dfrac{{{\alpha ^3} + {\beta ^3} + {\gamma ^3}}}{{{\alpha ^2} + {\beta ^2} + {\gamma ^2}}}$ whose value is required in terms of the known values which are $\left( {\alpha + \beta + \gamma } \right)$, $\left( {\alpha \beta + \beta \gamma + \alpha \gamma } \right)$ and \[\alpha \beta \gamma \] which can be easily obtained with the help of the known formulas for any general cubic equation.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it