
If $\alpha ,\beta $ be the roots of ${x^2} - px + q = 0$and $\alpha ',\beta '$ are the roots of ${x^2} - p'x + q' = 0$, find the value of${\left( {\alpha - \alpha '} \right)^2} + {\left( {\beta - \alpha '} \right)^2} + {\left( {\alpha - \beta '} \right)^2} + {\left( {\beta - \beta '} \right)^2}$
Answer
607.2k+ views
Hint: Use the properties of sum of the roots and product of the roots of the given quadratic polynomial equation.
Given $\alpha ,\beta $ are the roots of the quadratic equation ${x^2} - px + q = 0$and $\alpha ',\beta '$are the roots of the quadratic equation${x^2} - p'x + q' = 0$.
So, for the quadratic equation ${x^2} - px + q = 0$
Sum of the roots is $\alpha + \beta = p$ and product of the roots is $\alpha \beta = q$
Similarly, for the quadratic equation ${x^2} - p'x + q' = 0$
Sum of the roots is \[\alpha ' + \beta ' = p'\] and product of the roots is $\alpha '\beta ' = q'$
Now consider ${\left( {\alpha - \alpha '} \right)^2} + {\left( {\beta - \alpha '} \right)^2} + {\left( {\alpha - \beta '} \right)^2} + {\left( {\beta - \beta '} \right)^2}$
\[ = {\alpha ^2} + \alpha {'^2} - 2\alpha \alpha ' + {\beta ^2} + \alpha {'^2} - 2\beta \alpha ' + {\alpha ^2} + \beta {'^2} - 2\alpha \beta ' + {\beta ^2} + \beta {'^2} - 2\beta \beta '\]
Grouping the terms, we have
$ = 2\left( {{\alpha ^2} + \alpha {'^2} + {\beta ^2} + \beta {'^2}} \right) - 2\left( {\alpha + \beta } \right)\left( {\alpha ' + \beta '} \right)$
$ = 2\left[ {\left\{ {{{\left( {\alpha + \beta } \right)}^2} - 2\alpha \beta } \right\} + \left\{ {{{\left( {\alpha ' + \beta '} \right)}^2} - 2\alpha '\beta '} \right\}} \right] - 2\left( {\alpha + \beta } \right)\left( {\alpha ' + \beta '} \right)$
By the above relations we get
$ = 2\left[ {\left\{ {{{\left( p \right)}^2} - 2q} \right\} + \left\{ {{{\left( {p'} \right)}^2} - 2q'} \right\}} \right] - 2\left( {pp'} \right)$
$ = 2\left[ {{p^2} - 2q + p{'^2} - 2q' - pp'} \right]$
Hence the value of ${\left( {\alpha - \alpha '} \right)^2} + {\left( {\beta - \alpha '} \right)^2} + {\left( {\alpha - \beta '} \right)^2} + {\left( {\beta - \beta '} \right)^2}$ is$ = 2\left[ {{p^2} - 2q + p{'^2} - 2q' - pp'} \right]$.
Note: In this type of problem we tend to make mistakes in opening and closing the brackets of squaring and rooting. Always remember that for the quadratic polynomial \[a{x^2} + bx + c = 0\], the sum of the roots is \[ - \dfrac{b}{a}\] and the product of the roots is \[\dfrac{c}{a}\].
Given $\alpha ,\beta $ are the roots of the quadratic equation ${x^2} - px + q = 0$and $\alpha ',\beta '$are the roots of the quadratic equation${x^2} - p'x + q' = 0$.
So, for the quadratic equation ${x^2} - px + q = 0$
Sum of the roots is $\alpha + \beta = p$ and product of the roots is $\alpha \beta = q$
Similarly, for the quadratic equation ${x^2} - p'x + q' = 0$
Sum of the roots is \[\alpha ' + \beta ' = p'\] and product of the roots is $\alpha '\beta ' = q'$
Now consider ${\left( {\alpha - \alpha '} \right)^2} + {\left( {\beta - \alpha '} \right)^2} + {\left( {\alpha - \beta '} \right)^2} + {\left( {\beta - \beta '} \right)^2}$
\[ = {\alpha ^2} + \alpha {'^2} - 2\alpha \alpha ' + {\beta ^2} + \alpha {'^2} - 2\beta \alpha ' + {\alpha ^2} + \beta {'^2} - 2\alpha \beta ' + {\beta ^2} + \beta {'^2} - 2\beta \beta '\]
Grouping the terms, we have
$ = 2\left( {{\alpha ^2} + \alpha {'^2} + {\beta ^2} + \beta {'^2}} \right) - 2\left( {\alpha + \beta } \right)\left( {\alpha ' + \beta '} \right)$
$ = 2\left[ {\left\{ {{{\left( {\alpha + \beta } \right)}^2} - 2\alpha \beta } \right\} + \left\{ {{{\left( {\alpha ' + \beta '} \right)}^2} - 2\alpha '\beta '} \right\}} \right] - 2\left( {\alpha + \beta } \right)\left( {\alpha ' + \beta '} \right)$
By the above relations we get
$ = 2\left[ {\left\{ {{{\left( p \right)}^2} - 2q} \right\} + \left\{ {{{\left( {p'} \right)}^2} - 2q'} \right\}} \right] - 2\left( {pp'} \right)$
$ = 2\left[ {{p^2} - 2q + p{'^2} - 2q' - pp'} \right]$
Hence the value of ${\left( {\alpha - \alpha '} \right)^2} + {\left( {\beta - \alpha '} \right)^2} + {\left( {\alpha - \beta '} \right)^2} + {\left( {\beta - \beta '} \right)^2}$ is$ = 2\left[ {{p^2} - 2q + p{'^2} - 2q' - pp'} \right]$.
Note: In this type of problem we tend to make mistakes in opening and closing the brackets of squaring and rooting. Always remember that for the quadratic polynomial \[a{x^2} + bx + c = 0\], the sum of the roots is \[ - \dfrac{b}{a}\] and the product of the roots is \[\dfrac{c}{a}\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

