
If $\alpha ,\beta $are the complex cube roots of unity, then ${\alpha ^4} + {\beta ^4} + {\alpha ^{ - 1}}{\beta ^{ - 1}} = $
$
a.{\text{ 1}} \\
{\text{b}}{\text{. }}\omega \\
{\text{c}}{\text{. }}{\omega ^2} \\
{\text{d}}{\text{. 0}} \\
$
Answer
599.7k+ views
Hint: - Use $\alpha = \omega ,{\text{ }}\beta = {\omega ^2}$
As we know if $\alpha $and $\beta $are the complex cube roots of unity therefore
$1 + \alpha + \beta = 0................\left( 1 \right)$
As we know cube roots of unity are $1,\omega ,{\omega ^2}$
Where $\omega $and${\omega ^2}$are non-real complex cube roots of unity therefore
${\omega ^3} = 1........\left( 2 \right),{\text{ }}1 + \omega + {\omega ^2} = 0...............\left( 3 \right)$
So, from equations (1) and (3)
$\alpha = \omega ,{\text{ }}\beta = {\omega ^2}$
Now given equation is ${\alpha ^4} + {\beta ^4} + {\alpha ^{ - 1}}{\beta ^{ - 1}}$
\[
\Rightarrow {\omega ^4} + {\left( {{\omega ^2}} \right)^4} + {\omega ^{ - 1}}{\left( {{\omega ^2}} \right)^{ - 1}} \\
\Rightarrow {\omega ^3}.\omega + {\omega ^8} + {\omega ^{ - 1}}\left( {{\omega ^{ - 2}}} \right) \\
\Rightarrow {\omega ^3}.\omega + {\left( {{\omega ^3}} \right)^2}{\omega ^2} + \dfrac{1}{{{\omega ^3}}} \\
\]
From equation (2)
$
{\omega ^3} = 1 \\
\Rightarrow 1.\omega + {\left( 1 \right)^2}{\omega ^2} + 1 \\
\Rightarrow 1 + \omega + {\omega ^2} \\
$
From equation (3)
$
1 + \omega + {\omega ^2} = 0 \\
\Rightarrow {\alpha ^4} + {\beta ^4} + {\alpha ^{ - 1}}{\beta ^{ - 1}} = 1 + \omega + {\omega ^2} = 0 \\
$
Hence, option (d) is correct.
Note: - Whenever we face such types of problems the key concept is that always remember the condition of cube roots of unity which is stated above, then substitute the values in the given equation then simplify we will get the required answer.
As we know if $\alpha $and $\beta $are the complex cube roots of unity therefore
$1 + \alpha + \beta = 0................\left( 1 \right)$
As we know cube roots of unity are $1,\omega ,{\omega ^2}$
Where $\omega $and${\omega ^2}$are non-real complex cube roots of unity therefore
${\omega ^3} = 1........\left( 2 \right),{\text{ }}1 + \omega + {\omega ^2} = 0...............\left( 3 \right)$
So, from equations (1) and (3)
$\alpha = \omega ,{\text{ }}\beta = {\omega ^2}$
Now given equation is ${\alpha ^4} + {\beta ^4} + {\alpha ^{ - 1}}{\beta ^{ - 1}}$
\[
\Rightarrow {\omega ^4} + {\left( {{\omega ^2}} \right)^4} + {\omega ^{ - 1}}{\left( {{\omega ^2}} \right)^{ - 1}} \\
\Rightarrow {\omega ^3}.\omega + {\omega ^8} + {\omega ^{ - 1}}\left( {{\omega ^{ - 2}}} \right) \\
\Rightarrow {\omega ^3}.\omega + {\left( {{\omega ^3}} \right)^2}{\omega ^2} + \dfrac{1}{{{\omega ^3}}} \\
\]
From equation (2)
$
{\omega ^3} = 1 \\
\Rightarrow 1.\omega + {\left( 1 \right)^2}{\omega ^2} + 1 \\
\Rightarrow 1 + \omega + {\omega ^2} \\
$
From equation (3)
$
1 + \omega + {\omega ^2} = 0 \\
\Rightarrow {\alpha ^4} + {\beta ^4} + {\alpha ^{ - 1}}{\beta ^{ - 1}} = 1 + \omega + {\omega ^2} = 0 \\
$
Hence, option (d) is correct.
Note: - Whenever we face such types of problems the key concept is that always remember the condition of cube roots of unity which is stated above, then substitute the values in the given equation then simplify we will get the required answer.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
What is the difference between lightdependent and lightindependent class 11 biology CBSE

How would you explain how the lightindependent reaction class 11 biology CBSE

How are lightdependent and lightindependent reactions class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

10 examples of friction in our daily life

