
If $\alpha ,\beta $are the complex cube roots of unity, then ${\alpha ^4} + {\beta ^4} + {\alpha ^{ - 1}}{\beta ^{ - 1}} = $
$
a.{\text{ 1}} \\
{\text{b}}{\text{. }}\omega \\
{\text{c}}{\text{. }}{\omega ^2} \\
{\text{d}}{\text{. 0}} \\
$
Answer
605.4k+ views
Hint: - Use $\alpha = \omega ,{\text{ }}\beta = {\omega ^2}$
As we know if $\alpha $and $\beta $are the complex cube roots of unity therefore
$1 + \alpha + \beta = 0................\left( 1 \right)$
As we know cube roots of unity are $1,\omega ,{\omega ^2}$
Where $\omega $and${\omega ^2}$are non-real complex cube roots of unity therefore
${\omega ^3} = 1........\left( 2 \right),{\text{ }}1 + \omega + {\omega ^2} = 0...............\left( 3 \right)$
So, from equations (1) and (3)
$\alpha = \omega ,{\text{ }}\beta = {\omega ^2}$
Now given equation is ${\alpha ^4} + {\beta ^4} + {\alpha ^{ - 1}}{\beta ^{ - 1}}$
\[
\Rightarrow {\omega ^4} + {\left( {{\omega ^2}} \right)^4} + {\omega ^{ - 1}}{\left( {{\omega ^2}} \right)^{ - 1}} \\
\Rightarrow {\omega ^3}.\omega + {\omega ^8} + {\omega ^{ - 1}}\left( {{\omega ^{ - 2}}} \right) \\
\Rightarrow {\omega ^3}.\omega + {\left( {{\omega ^3}} \right)^2}{\omega ^2} + \dfrac{1}{{{\omega ^3}}} \\
\]
From equation (2)
$
{\omega ^3} = 1 \\
\Rightarrow 1.\omega + {\left( 1 \right)^2}{\omega ^2} + 1 \\
\Rightarrow 1 + \omega + {\omega ^2} \\
$
From equation (3)
$
1 + \omega + {\omega ^2} = 0 \\
\Rightarrow {\alpha ^4} + {\beta ^4} + {\alpha ^{ - 1}}{\beta ^{ - 1}} = 1 + \omega + {\omega ^2} = 0 \\
$
Hence, option (d) is correct.
Note: - Whenever we face such types of problems the key concept is that always remember the condition of cube roots of unity which is stated above, then substitute the values in the given equation then simplify we will get the required answer.
As we know if $\alpha $and $\beta $are the complex cube roots of unity therefore
$1 + \alpha + \beta = 0................\left( 1 \right)$
As we know cube roots of unity are $1,\omega ,{\omega ^2}$
Where $\omega $and${\omega ^2}$are non-real complex cube roots of unity therefore
${\omega ^3} = 1........\left( 2 \right),{\text{ }}1 + \omega + {\omega ^2} = 0...............\left( 3 \right)$
So, from equations (1) and (3)
$\alpha = \omega ,{\text{ }}\beta = {\omega ^2}$
Now given equation is ${\alpha ^4} + {\beta ^4} + {\alpha ^{ - 1}}{\beta ^{ - 1}}$
\[
\Rightarrow {\omega ^4} + {\left( {{\omega ^2}} \right)^4} + {\omega ^{ - 1}}{\left( {{\omega ^2}} \right)^{ - 1}} \\
\Rightarrow {\omega ^3}.\omega + {\omega ^8} + {\omega ^{ - 1}}\left( {{\omega ^{ - 2}}} \right) \\
\Rightarrow {\omega ^3}.\omega + {\left( {{\omega ^3}} \right)^2}{\omega ^2} + \dfrac{1}{{{\omega ^3}}} \\
\]
From equation (2)
$
{\omega ^3} = 1 \\
\Rightarrow 1.\omega + {\left( 1 \right)^2}{\omega ^2} + 1 \\
\Rightarrow 1 + \omega + {\omega ^2} \\
$
From equation (3)
$
1 + \omega + {\omega ^2} = 0 \\
\Rightarrow {\alpha ^4} + {\beta ^4} + {\alpha ^{ - 1}}{\beta ^{ - 1}} = 1 + \omega + {\omega ^2} = 0 \\
$
Hence, option (d) is correct.
Note: - Whenever we face such types of problems the key concept is that always remember the condition of cube roots of unity which is stated above, then substitute the values in the given equation then simplify we will get the required answer.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

