
If $\alpha ,\beta \text{ and }\gamma $ are the roots of the equation ${{x}^{3}}+px+q=0$ then the value of determinant \[\left| \begin{matrix}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta \\
\end{matrix} \right|\] is
\[\begin{align}
& A.p \\
& B.q \\
& C.{{p}^{2}}-2q \\
& D.0 \\
\end{align}\]
Answer
578.4k+ views
Hint: To solve this question, we will use three basic mathematical value which are given as below:
Sum of roots of a cubic (3 degree) equation is given by $\alpha +\beta +\gamma $ where equation is of the type \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\]
We also know the formula, sum of roots \[\Rightarrow \alpha +\beta +\gamma =\dfrac{-b}{a}=\dfrac{-\text{coefficient of }{{\text{x}}^{\text{2}}}}{\text{coefficient of }{{\text{x}}^{3}}}\]
Using this, we will get the value of $\alpha +\beta +\gamma $ which can then be substituted in the determinant after applying row transformations.
Complete step-by-step answer:
We are given the equation as ${{x}^{3}}+px+q=0$.
Now, we know that sum of roots of a cubic (3 degree) equation can be written as $\alpha +\beta +\gamma $ where equation is of the type \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\]. We also have a formula for finding the sum of roots. It is given as below,
\[\Rightarrow \alpha +\beta +\gamma =\dfrac{-b}{a}=\dfrac{-\text{coefficient of }{{\text{x}}^{\text{2}}}}{\text{coefficient of }{{\text{x}}^{3}}}\]
Here, in this given equation \[{{x}^{3}}+px+q=0\] we do not have any term of ${{x}^{2}}$ so, the coefficient of ${{x}^{2}}=0$
Hence, we get the sum of roots of equation \[{{x}^{3}}+px+q=0\] as
\[\begin{align}
& \alpha +\beta +\gamma =0\text{ as coefficient of }{{\text{x}}^{\text{2}}}=0 \\
& \alpha +\beta +\gamma =0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)} \\
\end{align}\]
Let us consider the determinant \[\left| \begin{matrix}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta \\
\end{matrix} \right|\]
Determinant property says that, sum of elements of row or column changes the value of determinant. Hence, adding all rows element of above determinant we get:
\[\left| \begin{matrix}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta \\
\end{matrix} \right|=\left| \begin{matrix}
\alpha +\beta +\gamma & \beta & \gamma \\
\alpha +\beta +\gamma & \gamma & \alpha \\
\alpha +\beta +\gamma & \alpha & \beta \\
\end{matrix} \right|\]
Using equation (i) we get:
\[\left| \begin{matrix}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta \\
\end{matrix} \right|=\left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|\]
Determinant property says that, if any one row or column is zero then the value of determinant is zero.
\[\left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|=0\]
Therefore, the value of \[\left| \begin{matrix}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta \\
\end{matrix} \right|=0\]
Therefore, the answer is 0,
So, the correct answer is “Option D”.
Note: Another way to solve this question can be, opening the determinant \[\left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|\] to get the required answer. Consider opening from first column, we get:
\[\begin{align}
& \left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|=0\left| \begin{matrix}
\gamma & \alpha \\
\alpha & \beta \\
\end{matrix} \right|-0\left| \begin{matrix}
\beta & \gamma \\
\alpha & \beta \\
\end{matrix} \right|+0\left| \begin{matrix}
\beta & \gamma \\
\gamma & \alpha \\
\end{matrix} \right| \\
& \Rightarrow \left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|=0-0-0 \\
& \Rightarrow \left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|=0 \\
\end{align}\]
Hence, the value of determinants: \[\left| \begin{matrix}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta \\
\end{matrix} \right|=0\]
Sum of roots of a cubic (3 degree) equation is given by $\alpha +\beta +\gamma $ where equation is of the type \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\]
We also know the formula, sum of roots \[\Rightarrow \alpha +\beta +\gamma =\dfrac{-b}{a}=\dfrac{-\text{coefficient of }{{\text{x}}^{\text{2}}}}{\text{coefficient of }{{\text{x}}^{3}}}\]
Using this, we will get the value of $\alpha +\beta +\gamma $ which can then be substituted in the determinant after applying row transformations.
Complete step-by-step answer:
We are given the equation as ${{x}^{3}}+px+q=0$.
Now, we know that sum of roots of a cubic (3 degree) equation can be written as $\alpha +\beta +\gamma $ where equation is of the type \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\]. We also have a formula for finding the sum of roots. It is given as below,
\[\Rightarrow \alpha +\beta +\gamma =\dfrac{-b}{a}=\dfrac{-\text{coefficient of }{{\text{x}}^{\text{2}}}}{\text{coefficient of }{{\text{x}}^{3}}}\]
Here, in this given equation \[{{x}^{3}}+px+q=0\] we do not have any term of ${{x}^{2}}$ so, the coefficient of ${{x}^{2}}=0$
Hence, we get the sum of roots of equation \[{{x}^{3}}+px+q=0\] as
\[\begin{align}
& \alpha +\beta +\gamma =0\text{ as coefficient of }{{\text{x}}^{\text{2}}}=0 \\
& \alpha +\beta +\gamma =0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)} \\
\end{align}\]
Let us consider the determinant \[\left| \begin{matrix}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta \\
\end{matrix} \right|\]
Determinant property says that, sum of elements of row or column changes the value of determinant. Hence, adding all rows element of above determinant we get:
\[\left| \begin{matrix}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta \\
\end{matrix} \right|=\left| \begin{matrix}
\alpha +\beta +\gamma & \beta & \gamma \\
\alpha +\beta +\gamma & \gamma & \alpha \\
\alpha +\beta +\gamma & \alpha & \beta \\
\end{matrix} \right|\]
Using equation (i) we get:
\[\left| \begin{matrix}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta \\
\end{matrix} \right|=\left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|\]
Determinant property says that, if any one row or column is zero then the value of determinant is zero.
\[\left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|=0\]
Therefore, the value of \[\left| \begin{matrix}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta \\
\end{matrix} \right|=0\]
Therefore, the answer is 0,
So, the correct answer is “Option D”.
Note: Another way to solve this question can be, opening the determinant \[\left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|\] to get the required answer. Consider opening from first column, we get:
\[\begin{align}
& \left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|=0\left| \begin{matrix}
\gamma & \alpha \\
\alpha & \beta \\
\end{matrix} \right|-0\left| \begin{matrix}
\beta & \gamma \\
\alpha & \beta \\
\end{matrix} \right|+0\left| \begin{matrix}
\beta & \gamma \\
\gamma & \alpha \\
\end{matrix} \right| \\
& \Rightarrow \left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|=0-0-0 \\
& \Rightarrow \left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|=0 \\
\end{align}\]
Hence, the value of determinants: \[\left| \begin{matrix}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta \\
\end{matrix} \right|=0\]
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

