
If $\alpha ,\beta \text{ and }\gamma $ are the roots of the equation ${{x}^{3}}+px+q=0$ then the value of determinant \[\left| \begin{matrix}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta \\
\end{matrix} \right|\] is
\[\begin{align}
& A.p \\
& B.q \\
& C.{{p}^{2}}-2q \\
& D.0 \\
\end{align}\]
Answer
513.3k+ views
Hint: To solve this question, we will use three basic mathematical value which are given as below:
Sum of roots of a cubic (3 degree) equation is given by $\alpha +\beta +\gamma $ where equation is of the type \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\]
We also know the formula, sum of roots \[\Rightarrow \alpha +\beta +\gamma =\dfrac{-b}{a}=\dfrac{-\text{coefficient of }{{\text{x}}^{\text{2}}}}{\text{coefficient of }{{\text{x}}^{3}}}\]
Using this, we will get the value of $\alpha +\beta +\gamma $ which can then be substituted in the determinant after applying row transformations.
Complete step-by-step answer:
We are given the equation as ${{x}^{3}}+px+q=0$.
Now, we know that sum of roots of a cubic (3 degree) equation can be written as $\alpha +\beta +\gamma $ where equation is of the type \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\]. We also have a formula for finding the sum of roots. It is given as below,
\[\Rightarrow \alpha +\beta +\gamma =\dfrac{-b}{a}=\dfrac{-\text{coefficient of }{{\text{x}}^{\text{2}}}}{\text{coefficient of }{{\text{x}}^{3}}}\]
Here, in this given equation \[{{x}^{3}}+px+q=0\] we do not have any term of ${{x}^{2}}$ so, the coefficient of ${{x}^{2}}=0$
Hence, we get the sum of roots of equation \[{{x}^{3}}+px+q=0\] as
\[\begin{align}
& \alpha +\beta +\gamma =0\text{ as coefficient of }{{\text{x}}^{\text{2}}}=0 \\
& \alpha +\beta +\gamma =0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)} \\
\end{align}\]
Let us consider the determinant \[\left| \begin{matrix}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta \\
\end{matrix} \right|\]
Determinant property says that, sum of elements of row or column changes the value of determinant. Hence, adding all rows element of above determinant we get:
\[\left| \begin{matrix}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta \\
\end{matrix} \right|=\left| \begin{matrix}
\alpha +\beta +\gamma & \beta & \gamma \\
\alpha +\beta +\gamma & \gamma & \alpha \\
\alpha +\beta +\gamma & \alpha & \beta \\
\end{matrix} \right|\]
Using equation (i) we get:
\[\left| \begin{matrix}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta \\
\end{matrix} \right|=\left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|\]
Determinant property says that, if any one row or column is zero then the value of determinant is zero.
\[\left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|=0\]
Therefore, the value of \[\left| \begin{matrix}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta \\
\end{matrix} \right|=0\]
Therefore, the answer is 0,
So, the correct answer is “Option D”.
Note: Another way to solve this question can be, opening the determinant \[\left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|\] to get the required answer. Consider opening from first column, we get:
\[\begin{align}
& \left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|=0\left| \begin{matrix}
\gamma & \alpha \\
\alpha & \beta \\
\end{matrix} \right|-0\left| \begin{matrix}
\beta & \gamma \\
\alpha & \beta \\
\end{matrix} \right|+0\left| \begin{matrix}
\beta & \gamma \\
\gamma & \alpha \\
\end{matrix} \right| \\
& \Rightarrow \left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|=0-0-0 \\
& \Rightarrow \left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|=0 \\
\end{align}\]
Hence, the value of determinants: \[\left| \begin{matrix}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta \\
\end{matrix} \right|=0\]
Sum of roots of a cubic (3 degree) equation is given by $\alpha +\beta +\gamma $ where equation is of the type \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\]
We also know the formula, sum of roots \[\Rightarrow \alpha +\beta +\gamma =\dfrac{-b}{a}=\dfrac{-\text{coefficient of }{{\text{x}}^{\text{2}}}}{\text{coefficient of }{{\text{x}}^{3}}}\]
Using this, we will get the value of $\alpha +\beta +\gamma $ which can then be substituted in the determinant after applying row transformations.
Complete step-by-step answer:
We are given the equation as ${{x}^{3}}+px+q=0$.
Now, we know that sum of roots of a cubic (3 degree) equation can be written as $\alpha +\beta +\gamma $ where equation is of the type \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\]. We also have a formula for finding the sum of roots. It is given as below,
\[\Rightarrow \alpha +\beta +\gamma =\dfrac{-b}{a}=\dfrac{-\text{coefficient of }{{\text{x}}^{\text{2}}}}{\text{coefficient of }{{\text{x}}^{3}}}\]
Here, in this given equation \[{{x}^{3}}+px+q=0\] we do not have any term of ${{x}^{2}}$ so, the coefficient of ${{x}^{2}}=0$
Hence, we get the sum of roots of equation \[{{x}^{3}}+px+q=0\] as
\[\begin{align}
& \alpha +\beta +\gamma =0\text{ as coefficient of }{{\text{x}}^{\text{2}}}=0 \\
& \alpha +\beta +\gamma =0\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)} \\
\end{align}\]
Let us consider the determinant \[\left| \begin{matrix}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta \\
\end{matrix} \right|\]
Determinant property says that, sum of elements of row or column changes the value of determinant. Hence, adding all rows element of above determinant we get:
\[\left| \begin{matrix}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta \\
\end{matrix} \right|=\left| \begin{matrix}
\alpha +\beta +\gamma & \beta & \gamma \\
\alpha +\beta +\gamma & \gamma & \alpha \\
\alpha +\beta +\gamma & \alpha & \beta \\
\end{matrix} \right|\]
Using equation (i) we get:
\[\left| \begin{matrix}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta \\
\end{matrix} \right|=\left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|\]
Determinant property says that, if any one row or column is zero then the value of determinant is zero.
\[\left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|=0\]
Therefore, the value of \[\left| \begin{matrix}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta \\
\end{matrix} \right|=0\]
Therefore, the answer is 0,
So, the correct answer is “Option D”.
Note: Another way to solve this question can be, opening the determinant \[\left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|\] to get the required answer. Consider opening from first column, we get:
\[\begin{align}
& \left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|=0\left| \begin{matrix}
\gamma & \alpha \\
\alpha & \beta \\
\end{matrix} \right|-0\left| \begin{matrix}
\beta & \gamma \\
\alpha & \beta \\
\end{matrix} \right|+0\left| \begin{matrix}
\beta & \gamma \\
\gamma & \alpha \\
\end{matrix} \right| \\
& \Rightarrow \left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|=0-0-0 \\
& \Rightarrow \left| \begin{matrix}
0 & \beta & \gamma \\
0 & \gamma & \alpha \\
0 & \alpha & \beta \\
\end{matrix} \right|=0 \\
\end{align}\]
Hence, the value of determinants: \[\left| \begin{matrix}
\alpha & \beta & \gamma \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta \\
\end{matrix} \right|=0\]
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
