
If \[\text{A=}\left[ \begin{matrix}
0 & 2 \\
5 & -2 \\
\end{matrix} \right]\] , \[\text{B=}\left[ \begin{matrix}
1 & -1 \\
3 & 2 \\
\end{matrix} \right]\] and I is a unit matrix of order \[2\times 2\] . Find: \[{{\text{B}}^{2}}\text{A}\]
Answer
553.2k+ views
Hint: For the given equation we are given to find \[{{\text{B}}^{2}}\text{A}\] for the given two matrices. For this we have to do matrix multiplication. By observing the problem we can see that we have to do two matrix multiplication in the problem. For doing any type of matrix multiplication it should satisfy the order condition.
Complete step by step answer:
For solving this question we are given two matrices \[\text{A=}\left[ \begin{matrix}
0 & 2 \\
5 & -2 \\
\end{matrix} \right]\] and \[\text{B=}\left[ \begin{matrix}
1 & -1 \\
3 & 2 \\
\end{matrix} \right]\]. Now we have to find \[{{\text{B}}^{2}}\text{A}\].
To solve the problem we have to do matrix multiplication which means it should satisfy the condition that the number of columns in the first matrix must be equal to the number of rows in the second matrix.
Let us check the above condition for given matrix, to solve this problem we have to do operations like \[{{B}^{2}}\] and \[{{B}^{2}}A\], for \[B\times B\] we have orders \[2\times 2\] and \[2\times 2\] respectively so it satisfies the condition.
Now for finding \[{{\text{B}}^{2}}\text{A}\] we have to find \[{{\text{B}}^{2}}\] and then we have to multiply with A.
First of all let us find \[{{\text{B}}^{2}}\]. For that we have to multiply B matrix with B matrix i.e. matrix multiplication.
As we know multiplication of matrix for the any matrix \[A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\] and \[B=\left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]\] will be.
\[AB=\left[ \begin{matrix}
ae+bg & af+bh \\
ce+dg & cf+dh \\
\end{matrix} \right]\]
Let us apply the above concept to the A and B matrices, we get
\[\begin{align}
& \Rightarrow B{{}^{2}}=\left[ \begin{matrix}
1 & -1 \\
3 & 2 \\
\end{matrix} \right]\times \left[ \begin{matrix}
1 & -1 \\
3 & 2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
1\times 1-1\times 3 & 1\times -1+-1\times 2 \\
3\times 1+2\times 3 & 3\times 1+2\times 2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
-2 & -4 \\
9 & 7 \\
\end{matrix} \right] \\
\end{align}\]
Now we have to do the operation \[{{\text{B}}^{2}}\times \text{A}\]
By applying the above concept we get:
\[\begin{align}
& \Rightarrow {{B}^{2}}\times A=\left[ \begin{matrix}
-2 & -4 \\
9 & 7 \\
\end{matrix} \right]\times \left[ \begin{matrix}
0 & 2 \\
5 & -2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
-2\times 0-4\times 5 & -2\times 2+4\times 2 \\
9\times 0+7\times 5 & 9\times 2-7\times 2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
20 & 4 \\
35 & 14 \\
\end{matrix} \right] \\
\end{align}\]
Hence \[{{\text{B}}^{2}}\text{A}\]is \[\text{=}\left[ \begin{matrix}
20 & 4 \\
35 & 14 \\
\end{matrix} \right]\].
Note: For any square matrix, matrix multiplication will be easy because order condition will always be satisfied whereas for a matrix with order \[m\times n\] we should check the order condition for every multiplication. Students should avoid calculation mistakes while solving these problems.
Complete step by step answer:
For solving this question we are given two matrices \[\text{A=}\left[ \begin{matrix}
0 & 2 \\
5 & -2 \\
\end{matrix} \right]\] and \[\text{B=}\left[ \begin{matrix}
1 & -1 \\
3 & 2 \\
\end{matrix} \right]\]. Now we have to find \[{{\text{B}}^{2}}\text{A}\].
To solve the problem we have to do matrix multiplication which means it should satisfy the condition that the number of columns in the first matrix must be equal to the number of rows in the second matrix.
Let us check the above condition for given matrix, to solve this problem we have to do operations like \[{{B}^{2}}\] and \[{{B}^{2}}A\], for \[B\times B\] we have orders \[2\times 2\] and \[2\times 2\] respectively so it satisfies the condition.
Now for finding \[{{\text{B}}^{2}}\text{A}\] we have to find \[{{\text{B}}^{2}}\] and then we have to multiply with A.
First of all let us find \[{{\text{B}}^{2}}\]. For that we have to multiply B matrix with B matrix i.e. matrix multiplication.
As we know multiplication of matrix for the any matrix \[A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\] and \[B=\left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]\] will be.
\[AB=\left[ \begin{matrix}
ae+bg & af+bh \\
ce+dg & cf+dh \\
\end{matrix} \right]\]
Let us apply the above concept to the A and B matrices, we get
\[\begin{align}
& \Rightarrow B{{}^{2}}=\left[ \begin{matrix}
1 & -1 \\
3 & 2 \\
\end{matrix} \right]\times \left[ \begin{matrix}
1 & -1 \\
3 & 2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
1\times 1-1\times 3 & 1\times -1+-1\times 2 \\
3\times 1+2\times 3 & 3\times 1+2\times 2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
-2 & -4 \\
9 & 7 \\
\end{matrix} \right] \\
\end{align}\]
Now we have to do the operation \[{{\text{B}}^{2}}\times \text{A}\]
By applying the above concept we get:
\[\begin{align}
& \Rightarrow {{B}^{2}}\times A=\left[ \begin{matrix}
-2 & -4 \\
9 & 7 \\
\end{matrix} \right]\times \left[ \begin{matrix}
0 & 2 \\
5 & -2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
-2\times 0-4\times 5 & -2\times 2+4\times 2 \\
9\times 0+7\times 5 & 9\times 2-7\times 2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
20 & 4 \\
35 & 14 \\
\end{matrix} \right] \\
\end{align}\]
Hence \[{{\text{B}}^{2}}\text{A}\]is \[\text{=}\left[ \begin{matrix}
20 & 4 \\
35 & 14 \\
\end{matrix} \right]\].
Note: For any square matrix, matrix multiplication will be easy because order condition will always be satisfied whereas for a matrix with order \[m\times n\] we should check the order condition for every multiplication. Students should avoid calculation mistakes while solving these problems.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

