
If \[\text{A=}\left[ \begin{matrix}
0 & 2 \\
5 & -2 \\
\end{matrix} \right]\] , \[\text{B=}\left[ \begin{matrix}
1 & -1 \\
3 & 2 \\
\end{matrix} \right]\] and I is a unit matrix of order \[2\times 2\] . Find: \[{{\text{B}}^{2}}\text{A}\]
Answer
539.7k+ views
Hint: For the given equation we are given to find \[{{\text{B}}^{2}}\text{A}\] for the given two matrices. For this we have to do matrix multiplication. By observing the problem we can see that we have to do two matrix multiplication in the problem. For doing any type of matrix multiplication it should satisfy the order condition.
Complete step by step answer:
For solving this question we are given two matrices \[\text{A=}\left[ \begin{matrix}
0 & 2 \\
5 & -2 \\
\end{matrix} \right]\] and \[\text{B=}\left[ \begin{matrix}
1 & -1 \\
3 & 2 \\
\end{matrix} \right]\]. Now we have to find \[{{\text{B}}^{2}}\text{A}\].
To solve the problem we have to do matrix multiplication which means it should satisfy the condition that the number of columns in the first matrix must be equal to the number of rows in the second matrix.
Let us check the above condition for given matrix, to solve this problem we have to do operations like \[{{B}^{2}}\] and \[{{B}^{2}}A\], for \[B\times B\] we have orders \[2\times 2\] and \[2\times 2\] respectively so it satisfies the condition.
Now for finding \[{{\text{B}}^{2}}\text{A}\] we have to find \[{{\text{B}}^{2}}\] and then we have to multiply with A.
First of all let us find \[{{\text{B}}^{2}}\]. For that we have to multiply B matrix with B matrix i.e. matrix multiplication.
As we know multiplication of matrix for the any matrix \[A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\] and \[B=\left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]\] will be.
\[AB=\left[ \begin{matrix}
ae+bg & af+bh \\
ce+dg & cf+dh \\
\end{matrix} \right]\]
Let us apply the above concept to the A and B matrices, we get
\[\begin{align}
& \Rightarrow B{{}^{2}}=\left[ \begin{matrix}
1 & -1 \\
3 & 2 \\
\end{matrix} \right]\times \left[ \begin{matrix}
1 & -1 \\
3 & 2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
1\times 1-1\times 3 & 1\times -1+-1\times 2 \\
3\times 1+2\times 3 & 3\times 1+2\times 2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
-2 & -4 \\
9 & 7 \\
\end{matrix} \right] \\
\end{align}\]
Now we have to do the operation \[{{\text{B}}^{2}}\times \text{A}\]
By applying the above concept we get:
\[\begin{align}
& \Rightarrow {{B}^{2}}\times A=\left[ \begin{matrix}
-2 & -4 \\
9 & 7 \\
\end{matrix} \right]\times \left[ \begin{matrix}
0 & 2 \\
5 & -2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
-2\times 0-4\times 5 & -2\times 2+4\times 2 \\
9\times 0+7\times 5 & 9\times 2-7\times 2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
20 & 4 \\
35 & 14 \\
\end{matrix} \right] \\
\end{align}\]
Hence \[{{\text{B}}^{2}}\text{A}\]is \[\text{=}\left[ \begin{matrix}
20 & 4 \\
35 & 14 \\
\end{matrix} \right]\].
Note: For any square matrix, matrix multiplication will be easy because order condition will always be satisfied whereas for a matrix with order \[m\times n\] we should check the order condition for every multiplication. Students should avoid calculation mistakes while solving these problems.
Complete step by step answer:
For solving this question we are given two matrices \[\text{A=}\left[ \begin{matrix}
0 & 2 \\
5 & -2 \\
\end{matrix} \right]\] and \[\text{B=}\left[ \begin{matrix}
1 & -1 \\
3 & 2 \\
\end{matrix} \right]\]. Now we have to find \[{{\text{B}}^{2}}\text{A}\].
To solve the problem we have to do matrix multiplication which means it should satisfy the condition that the number of columns in the first matrix must be equal to the number of rows in the second matrix.
Let us check the above condition for given matrix, to solve this problem we have to do operations like \[{{B}^{2}}\] and \[{{B}^{2}}A\], for \[B\times B\] we have orders \[2\times 2\] and \[2\times 2\] respectively so it satisfies the condition.
Now for finding \[{{\text{B}}^{2}}\text{A}\] we have to find \[{{\text{B}}^{2}}\] and then we have to multiply with A.
First of all let us find \[{{\text{B}}^{2}}\]. For that we have to multiply B matrix with B matrix i.e. matrix multiplication.
As we know multiplication of matrix for the any matrix \[A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\] and \[B=\left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]\] will be.
\[AB=\left[ \begin{matrix}
ae+bg & af+bh \\
ce+dg & cf+dh \\
\end{matrix} \right]\]
Let us apply the above concept to the A and B matrices, we get
\[\begin{align}
& \Rightarrow B{{}^{2}}=\left[ \begin{matrix}
1 & -1 \\
3 & 2 \\
\end{matrix} \right]\times \left[ \begin{matrix}
1 & -1 \\
3 & 2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
1\times 1-1\times 3 & 1\times -1+-1\times 2 \\
3\times 1+2\times 3 & 3\times 1+2\times 2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
-2 & -4 \\
9 & 7 \\
\end{matrix} \right] \\
\end{align}\]
Now we have to do the operation \[{{\text{B}}^{2}}\times \text{A}\]
By applying the above concept we get:
\[\begin{align}
& \Rightarrow {{B}^{2}}\times A=\left[ \begin{matrix}
-2 & -4 \\
9 & 7 \\
\end{matrix} \right]\times \left[ \begin{matrix}
0 & 2 \\
5 & -2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
-2\times 0-4\times 5 & -2\times 2+4\times 2 \\
9\times 0+7\times 5 & 9\times 2-7\times 2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
20 & 4 \\
35 & 14 \\
\end{matrix} \right] \\
\end{align}\]
Hence \[{{\text{B}}^{2}}\text{A}\]is \[\text{=}\left[ \begin{matrix}
20 & 4 \\
35 & 14 \\
\end{matrix} \right]\].
Note: For any square matrix, matrix multiplication will be easy because order condition will always be satisfied whereas for a matrix with order \[m\times n\] we should check the order condition for every multiplication. Students should avoid calculation mistakes while solving these problems.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

