Answer
Verified
425.1k+ views
Hint: For the given equation we are given to find \[{{\text{B}}^{2}}\text{A}\] for the given two matrices. For this we have to do matrix multiplication. By observing the problem we can see that we have to do two matrix multiplication in the problem. For doing any type of matrix multiplication it should satisfy the order condition.
Complete step by step answer:
For solving this question we are given two matrices \[\text{A=}\left[ \begin{matrix}
0 & 2 \\
5 & -2 \\
\end{matrix} \right]\] and \[\text{B=}\left[ \begin{matrix}
1 & -1 \\
3 & 2 \\
\end{matrix} \right]\]. Now we have to find \[{{\text{B}}^{2}}\text{A}\].
To solve the problem we have to do matrix multiplication which means it should satisfy the condition that the number of columns in the first matrix must be equal to the number of rows in the second matrix.
Let us check the above condition for given matrix, to solve this problem we have to do operations like \[{{B}^{2}}\] and \[{{B}^{2}}A\], for \[B\times B\] we have orders \[2\times 2\] and \[2\times 2\] respectively so it satisfies the condition.
Now for finding \[{{\text{B}}^{2}}\text{A}\] we have to find \[{{\text{B}}^{2}}\] and then we have to multiply with A.
First of all let us find \[{{\text{B}}^{2}}\]. For that we have to multiply B matrix with B matrix i.e. matrix multiplication.
As we know multiplication of matrix for the any matrix \[A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\] and \[B=\left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]\] will be.
\[AB=\left[ \begin{matrix}
ae+bg & af+bh \\
ce+dg & cf+dh \\
\end{matrix} \right]\]
Let us apply the above concept to the A and B matrices, we get
\[\begin{align}
& \Rightarrow B{{}^{2}}=\left[ \begin{matrix}
1 & -1 \\
3 & 2 \\
\end{matrix} \right]\times \left[ \begin{matrix}
1 & -1 \\
3 & 2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
1\times 1-1\times 3 & 1\times -1+-1\times 2 \\
3\times 1+2\times 3 & 3\times 1+2\times 2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
-2 & -4 \\
9 & 7 \\
\end{matrix} \right] \\
\end{align}\]
Now we have to do the operation \[{{\text{B}}^{2}}\times \text{A}\]
By applying the above concept we get:
\[\begin{align}
& \Rightarrow {{B}^{2}}\times A=\left[ \begin{matrix}
-2 & -4 \\
9 & 7 \\
\end{matrix} \right]\times \left[ \begin{matrix}
0 & 2 \\
5 & -2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
-2\times 0-4\times 5 & -2\times 2+4\times 2 \\
9\times 0+7\times 5 & 9\times 2-7\times 2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
20 & 4 \\
35 & 14 \\
\end{matrix} \right] \\
\end{align}\]
Hence \[{{\text{B}}^{2}}\text{A}\]is \[\text{=}\left[ \begin{matrix}
20 & 4 \\
35 & 14 \\
\end{matrix} \right]\].
Note: For any square matrix, matrix multiplication will be easy because order condition will always be satisfied whereas for a matrix with order \[m\times n\] we should check the order condition for every multiplication. Students should avoid calculation mistakes while solving these problems.
Complete step by step answer:
For solving this question we are given two matrices \[\text{A=}\left[ \begin{matrix}
0 & 2 \\
5 & -2 \\
\end{matrix} \right]\] and \[\text{B=}\left[ \begin{matrix}
1 & -1 \\
3 & 2 \\
\end{matrix} \right]\]. Now we have to find \[{{\text{B}}^{2}}\text{A}\].
To solve the problem we have to do matrix multiplication which means it should satisfy the condition that the number of columns in the first matrix must be equal to the number of rows in the second matrix.
Let us check the above condition for given matrix, to solve this problem we have to do operations like \[{{B}^{2}}\] and \[{{B}^{2}}A\], for \[B\times B\] we have orders \[2\times 2\] and \[2\times 2\] respectively so it satisfies the condition.
Now for finding \[{{\text{B}}^{2}}\text{A}\] we have to find \[{{\text{B}}^{2}}\] and then we have to multiply with A.
First of all let us find \[{{\text{B}}^{2}}\]. For that we have to multiply B matrix with B matrix i.e. matrix multiplication.
As we know multiplication of matrix for the any matrix \[A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\] and \[B=\left[ \begin{matrix}
e & f \\
g & h \\
\end{matrix} \right]\] will be.
\[AB=\left[ \begin{matrix}
ae+bg & af+bh \\
ce+dg & cf+dh \\
\end{matrix} \right]\]
Let us apply the above concept to the A and B matrices, we get
\[\begin{align}
& \Rightarrow B{{}^{2}}=\left[ \begin{matrix}
1 & -1 \\
3 & 2 \\
\end{matrix} \right]\times \left[ \begin{matrix}
1 & -1 \\
3 & 2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
1\times 1-1\times 3 & 1\times -1+-1\times 2 \\
3\times 1+2\times 3 & 3\times 1+2\times 2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
-2 & -4 \\
9 & 7 \\
\end{matrix} \right] \\
\end{align}\]
Now we have to do the operation \[{{\text{B}}^{2}}\times \text{A}\]
By applying the above concept we get:
\[\begin{align}
& \Rightarrow {{B}^{2}}\times A=\left[ \begin{matrix}
-2 & -4 \\
9 & 7 \\
\end{matrix} \right]\times \left[ \begin{matrix}
0 & 2 \\
5 & -2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
-2\times 0-4\times 5 & -2\times 2+4\times 2 \\
9\times 0+7\times 5 & 9\times 2-7\times 2 \\
\end{matrix} \right] \\
& \Rightarrow \text{ =}\left[ \begin{matrix}
20 & 4 \\
35 & 14 \\
\end{matrix} \right] \\
\end{align}\]
Hence \[{{\text{B}}^{2}}\text{A}\]is \[\text{=}\left[ \begin{matrix}
20 & 4 \\
35 & 14 \\
\end{matrix} \right]\].
Note: For any square matrix, matrix multiplication will be easy because order condition will always be satisfied whereas for a matrix with order \[m\times n\] we should check the order condition for every multiplication. Students should avoid calculation mistakes while solving these problems.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE