# If \[a=\hat{i}-2\hat{j}+3\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\] and \[r\times a=b\times a,r\times b=a\times b\], then a unit vector in the direction of \[r\] is

(a) \[\pm \dfrac{1}{3}\left( -2\hat{i}+\hat{j}-\hat{k} \right)\]

(b) \[\pm \dfrac{1}{3}\left( -2\hat{i}-\hat{j}+2\hat{k} \right)\]

(c) \[\pm \dfrac{1}{3}\left( -2\hat{i}-\hat{j}-2\hat{k} \right)\]

(d) None of these

Last updated date: 26th Mar 2023

•

Total views: 308.4k

•

Views today: 2.87k

Answer

Verified

308.4k+ views

Hint: Use a cross product of two vectors to find the value of \[b\times a\] and \[a\times b\]. Assume the vector \[r\] as \[r=x\hat{i}+y\hat{j}+z\hat{k}\] and write the equations satisfying the given conditions. Solve those equations to get the value of the vector \[r\].

Complete step-by-step answer:

We have two vectors \[a=\hat{i}-2\hat{j}+3\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\]. There exists a third vector \[r\] such that \[r\times a=b\times a,r\times b=a\times b\]. We will form equations satisfying the given properties to find a unit vector in the direction of the vector \[r\].

Let’s assume that we can write the vector \[r\] as \[r=x\hat{i}+y\hat{j}+z\hat{k}\].

We will now find the value of \[b\times a\] where \[a=\hat{i}-2\hat{j}+3\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\].

We know that if there are two vectors \[a={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}\] and \[b={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}\], then we have \[a\times b=\left| \begin{matrix}

{\hat{i}} & {\hat{j}} & {\hat{k}} \\

{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\

{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\

\end{matrix} \right|\] as the value of cross multiplication of vectors \[a={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}\] and \[b={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}\].

Thus, when \[a=\hat{i}-2\hat{j}+3\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\], we have \[a\times b=\left| \begin{matrix}

{\hat{i}} & {\hat{j}} & {\hat{k}} \\

1 & -2 & 3 \\

-3 & 1 & -1 \\

\end{matrix} \right|=\hat{i}\left( 2-3 \right)-\hat{j}\left( -1+9 \right)+\hat{k}\left( 1-6 \right)=-\hat{i}-8\hat{j}-5\hat{k}\].

Now, we will evaluate the value of \[r\times b\] where \[r=x\hat{i}+y\hat{j}+z\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\]. Thus, we have \[r\times b=\left| \begin{matrix}

{\hat{i}} & {\hat{j}} & {\hat{k}} \\

x & y & z \\

-3 & 1 & -1 \\

\end{matrix} \right|=\hat{i}\left( -y-z \right)-\hat{j}\left( -x+3z \right)+\hat{k}\left( x+3y \right)\].

As we have \[r\times b=a\times b\], we have \[-\hat{i}-8\hat{j}-5\hat{k}=\hat{i}\left( -y-z \right)-\hat{j}\left( -x+3z \right)+\hat{k}\left( x+3y \right)\].

Comparing the coefficients on both sides, we get \[y+z=1,3z-x=8,x+3y=-5\].

We know that \[b\times a=-\left( a\times b \right)\]. Thus, we have \[b\times a=-\left( -\hat{i}-8\hat{j}-5\hat{k} \right)=\hat{i}+8\hat{j}+5\hat{k}\].

Now, we will evaluate the value of \[r\times a\]. Thus, we have \[r\times a=\left| \begin{matrix}

{\hat{i}} & {\hat{j}} & {\hat{k}} \\

x & y & z \\

1 & -2 & 3 \\

\end{matrix} \right|=\hat{i}\left( 3y+2z \right)-\hat{j}\left( 3x-z \right)+\hat{k}\left( -2x-y \right)\].

As we have \[r\times a=b\times a\], we have \[\hat{i}+8\hat{j}+5\hat{k}=\hat{i}\left( 3y+2z \right)-\hat{j}\left( -z+3x \right)+\hat{k}\left( -2x-y \right)\].

Comparing the coefficients on both sides, we get \[1=3y+2z,8=z-3x,5=-2x-y\].

Thus, we have the equations \[y+z=1,3z-x=8,x+3y=-5\] and \[1=3y+2z,8=z-3x,5=-2x-y\]. We will now solve these equations by elimination method.

Multiplying equation \[y+z=1\] with \[2\] and subtracting it from equation \[1=3y+2z\], we get \[3y+2z-2\left( y+z \right)=1-2\].

\[\Rightarrow y=-1\]

Substituting the value \[y=-1\] in equation \[5=-y-2x\] , we have \[5=1-2x\]. Further solving, we get \[2x=-4\Rightarrow x=-2\].

Substituting the value \[x=-2\] in equation \[3z-x=8\] , we have \[3z-\left( -2 \right)=8\]. Further solving, we get \[3z=6\Rightarrow z=2\].

Thus, we have \[r=x\hat{i}+y\hat{j}+z\hat{k}=-2\hat{i}-\hat{j}+2\hat{k}\].

We want to find the unit vector in the direction of the vector \[r\]. We will divide it by the value of \[\left| r \right|\].

We have \[\left| r \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}=\sqrt{{{\left( -2 \right)}^{2}}+{{\left( -1 \right)}^{2}}+{{\left( 2 \right)}^{2}}}=\sqrt{9}=\pm 3\].

Hence, the unit vector in direction of \[r\] is \[\dfrac{r}{\left| r \right|}=\pm \dfrac{1}{3}\left( -2\hat{i}-\hat{j}+2\hat{k} \right)\], which is option (b).

Note: We should observe that the vector \[r\] lies in the plane perpendicular to both \[a\] and \[b\]. Also, one must keep in mind that we have to find the unit vector, not just any vector satisfying the conditions. We can also find the value of \[b\times a\] by substituting the values in the matrix and finding its value. However, it will be time consuming. Thus, it’s better to use \[b\times a=-\left( a\times b \right)\].

Complete step-by-step answer:

We have two vectors \[a=\hat{i}-2\hat{j}+3\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\]. There exists a third vector \[r\] such that \[r\times a=b\times a,r\times b=a\times b\]. We will form equations satisfying the given properties to find a unit vector in the direction of the vector \[r\].

Let’s assume that we can write the vector \[r\] as \[r=x\hat{i}+y\hat{j}+z\hat{k}\].

We will now find the value of \[b\times a\] where \[a=\hat{i}-2\hat{j}+3\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\].

We know that if there are two vectors \[a={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}\] and \[b={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}\], then we have \[a\times b=\left| \begin{matrix}

{\hat{i}} & {\hat{j}} & {\hat{k}} \\

{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\

{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\

\end{matrix} \right|\] as the value of cross multiplication of vectors \[a={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}\] and \[b={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}\].

Thus, when \[a=\hat{i}-2\hat{j}+3\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\], we have \[a\times b=\left| \begin{matrix}

{\hat{i}} & {\hat{j}} & {\hat{k}} \\

1 & -2 & 3 \\

-3 & 1 & -1 \\

\end{matrix} \right|=\hat{i}\left( 2-3 \right)-\hat{j}\left( -1+9 \right)+\hat{k}\left( 1-6 \right)=-\hat{i}-8\hat{j}-5\hat{k}\].

Now, we will evaluate the value of \[r\times b\] where \[r=x\hat{i}+y\hat{j}+z\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\]. Thus, we have \[r\times b=\left| \begin{matrix}

{\hat{i}} & {\hat{j}} & {\hat{k}} \\

x & y & z \\

-3 & 1 & -1 \\

\end{matrix} \right|=\hat{i}\left( -y-z \right)-\hat{j}\left( -x+3z \right)+\hat{k}\left( x+3y \right)\].

As we have \[r\times b=a\times b\], we have \[-\hat{i}-8\hat{j}-5\hat{k}=\hat{i}\left( -y-z \right)-\hat{j}\left( -x+3z \right)+\hat{k}\left( x+3y \right)\].

Comparing the coefficients on both sides, we get \[y+z=1,3z-x=8,x+3y=-5\].

We know that \[b\times a=-\left( a\times b \right)\]. Thus, we have \[b\times a=-\left( -\hat{i}-8\hat{j}-5\hat{k} \right)=\hat{i}+8\hat{j}+5\hat{k}\].

Now, we will evaluate the value of \[r\times a\]. Thus, we have \[r\times a=\left| \begin{matrix}

{\hat{i}} & {\hat{j}} & {\hat{k}} \\

x & y & z \\

1 & -2 & 3 \\

\end{matrix} \right|=\hat{i}\left( 3y+2z \right)-\hat{j}\left( 3x-z \right)+\hat{k}\left( -2x-y \right)\].

As we have \[r\times a=b\times a\], we have \[\hat{i}+8\hat{j}+5\hat{k}=\hat{i}\left( 3y+2z \right)-\hat{j}\left( -z+3x \right)+\hat{k}\left( -2x-y \right)\].

Comparing the coefficients on both sides, we get \[1=3y+2z,8=z-3x,5=-2x-y\].

Thus, we have the equations \[y+z=1,3z-x=8,x+3y=-5\] and \[1=3y+2z,8=z-3x,5=-2x-y\]. We will now solve these equations by elimination method.

Multiplying equation \[y+z=1\] with \[2\] and subtracting it from equation \[1=3y+2z\], we get \[3y+2z-2\left( y+z \right)=1-2\].

\[\Rightarrow y=-1\]

Substituting the value \[y=-1\] in equation \[5=-y-2x\] , we have \[5=1-2x\]. Further solving, we get \[2x=-4\Rightarrow x=-2\].

Substituting the value \[x=-2\] in equation \[3z-x=8\] , we have \[3z-\left( -2 \right)=8\]. Further solving, we get \[3z=6\Rightarrow z=2\].

Thus, we have \[r=x\hat{i}+y\hat{j}+z\hat{k}=-2\hat{i}-\hat{j}+2\hat{k}\].

We want to find the unit vector in the direction of the vector \[r\]. We will divide it by the value of \[\left| r \right|\].

We have \[\left| r \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}=\sqrt{{{\left( -2 \right)}^{2}}+{{\left( -1 \right)}^{2}}+{{\left( 2 \right)}^{2}}}=\sqrt{9}=\pm 3\].

Hence, the unit vector in direction of \[r\] is \[\dfrac{r}{\left| r \right|}=\pm \dfrac{1}{3}\left( -2\hat{i}-\hat{j}+2\hat{k} \right)\], which is option (b).

Note: We should observe that the vector \[r\] lies in the plane perpendicular to both \[a\] and \[b\]. Also, one must keep in mind that we have to find the unit vector, not just any vector satisfying the conditions. We can also find the value of \[b\times a\] by substituting the values in the matrix and finding its value. However, it will be time consuming. Thus, it’s better to use \[b\times a=-\left( a\times b \right)\].

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE