
If \[a=\hat{i}-2\hat{j}+3\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\] and \[r\times a=b\times a,r\times b=a\times b\], then a unit vector in the direction of \[r\] is
(a) \[\pm \dfrac{1}{3}\left( -2\hat{i}+\hat{j}-\hat{k} \right)\]
(b) \[\pm \dfrac{1}{3}\left( -2\hat{i}-\hat{j}+2\hat{k} \right)\]
(c) \[\pm \dfrac{1}{3}\left( -2\hat{i}-\hat{j}-2\hat{k} \right)\]
(d) None of these
Answer
608.7k+ views
Hint: Use a cross product of two vectors to find the value of \[b\times a\] and \[a\times b\]. Assume the vector \[r\] as \[r=x\hat{i}+y\hat{j}+z\hat{k}\] and write the equations satisfying the given conditions. Solve those equations to get the value of the vector \[r\].
Complete step-by-step answer:
We have two vectors \[a=\hat{i}-2\hat{j}+3\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\]. There exists a third vector \[r\] such that \[r\times a=b\times a,r\times b=a\times b\]. We will form equations satisfying the given properties to find a unit vector in the direction of the vector \[r\].
Let’s assume that we can write the vector \[r\] as \[r=x\hat{i}+y\hat{j}+z\hat{k}\].
We will now find the value of \[b\times a\] where \[a=\hat{i}-2\hat{j}+3\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\].
We know that if there are two vectors \[a={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}\] and \[b={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}\], then we have \[a\times b=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|\] as the value of cross multiplication of vectors \[a={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}\] and \[b={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}\].
Thus, when \[a=\hat{i}-2\hat{j}+3\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\], we have \[a\times b=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
1 & -2 & 3 \\
-3 & 1 & -1 \\
\end{matrix} \right|=\hat{i}\left( 2-3 \right)-\hat{j}\left( -1+9 \right)+\hat{k}\left( 1-6 \right)=-\hat{i}-8\hat{j}-5\hat{k}\].
Now, we will evaluate the value of \[r\times b\] where \[r=x\hat{i}+y\hat{j}+z\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\]. Thus, we have \[r\times b=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
x & y & z \\
-3 & 1 & -1 \\
\end{matrix} \right|=\hat{i}\left( -y-z \right)-\hat{j}\left( -x+3z \right)+\hat{k}\left( x+3y \right)\].
As we have \[r\times b=a\times b\], we have \[-\hat{i}-8\hat{j}-5\hat{k}=\hat{i}\left( -y-z \right)-\hat{j}\left( -x+3z \right)+\hat{k}\left( x+3y \right)\].
Comparing the coefficients on both sides, we get \[y+z=1,3z-x=8,x+3y=-5\].
We know that \[b\times a=-\left( a\times b \right)\]. Thus, we have \[b\times a=-\left( -\hat{i}-8\hat{j}-5\hat{k} \right)=\hat{i}+8\hat{j}+5\hat{k}\].
Now, we will evaluate the value of \[r\times a\]. Thus, we have \[r\times a=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
x & y & z \\
1 & -2 & 3 \\
\end{matrix} \right|=\hat{i}\left( 3y+2z \right)-\hat{j}\left( 3x-z \right)+\hat{k}\left( -2x-y \right)\].
As we have \[r\times a=b\times a\], we have \[\hat{i}+8\hat{j}+5\hat{k}=\hat{i}\left( 3y+2z \right)-\hat{j}\left( -z+3x \right)+\hat{k}\left( -2x-y \right)\].
Comparing the coefficients on both sides, we get \[1=3y+2z,8=z-3x,5=-2x-y\].
Thus, we have the equations \[y+z=1,3z-x=8,x+3y=-5\] and \[1=3y+2z,8=z-3x,5=-2x-y\]. We will now solve these equations by elimination method.
Multiplying equation \[y+z=1\] with \[2\] and subtracting it from equation \[1=3y+2z\], we get \[3y+2z-2\left( y+z \right)=1-2\].
\[\Rightarrow y=-1\]
Substituting the value \[y=-1\] in equation \[5=-y-2x\] , we have \[5=1-2x\]. Further solving, we get \[2x=-4\Rightarrow x=-2\].
Substituting the value \[x=-2\] in equation \[3z-x=8\] , we have \[3z-\left( -2 \right)=8\]. Further solving, we get \[3z=6\Rightarrow z=2\].
Thus, we have \[r=x\hat{i}+y\hat{j}+z\hat{k}=-2\hat{i}-\hat{j}+2\hat{k}\].
We want to find the unit vector in the direction of the vector \[r\]. We will divide it by the value of \[\left| r \right|\].
We have \[\left| r \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}=\sqrt{{{\left( -2 \right)}^{2}}+{{\left( -1 \right)}^{2}}+{{\left( 2 \right)}^{2}}}=\sqrt{9}=\pm 3\].
Hence, the unit vector in direction of \[r\] is \[\dfrac{r}{\left| r \right|}=\pm \dfrac{1}{3}\left( -2\hat{i}-\hat{j}+2\hat{k} \right)\], which is option (b).
Note: We should observe that the vector \[r\] lies in the plane perpendicular to both \[a\] and \[b\]. Also, one must keep in mind that we have to find the unit vector, not just any vector satisfying the conditions. We can also find the value of \[b\times a\] by substituting the values in the matrix and finding its value. However, it will be time consuming. Thus, it’s better to use \[b\times a=-\left( a\times b \right)\].
Complete step-by-step answer:
We have two vectors \[a=\hat{i}-2\hat{j}+3\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\]. There exists a third vector \[r\] such that \[r\times a=b\times a,r\times b=a\times b\]. We will form equations satisfying the given properties to find a unit vector in the direction of the vector \[r\].
Let’s assume that we can write the vector \[r\] as \[r=x\hat{i}+y\hat{j}+z\hat{k}\].
We will now find the value of \[b\times a\] where \[a=\hat{i}-2\hat{j}+3\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\].
We know that if there are two vectors \[a={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}\] and \[b={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}\], then we have \[a\times b=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \right|\] as the value of cross multiplication of vectors \[a={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}\] and \[b={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}\].
Thus, when \[a=\hat{i}-2\hat{j}+3\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\], we have \[a\times b=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
1 & -2 & 3 \\
-3 & 1 & -1 \\
\end{matrix} \right|=\hat{i}\left( 2-3 \right)-\hat{j}\left( -1+9 \right)+\hat{k}\left( 1-6 \right)=-\hat{i}-8\hat{j}-5\hat{k}\].
Now, we will evaluate the value of \[r\times b\] where \[r=x\hat{i}+y\hat{j}+z\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\]. Thus, we have \[r\times b=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
x & y & z \\
-3 & 1 & -1 \\
\end{matrix} \right|=\hat{i}\left( -y-z \right)-\hat{j}\left( -x+3z \right)+\hat{k}\left( x+3y \right)\].
As we have \[r\times b=a\times b\], we have \[-\hat{i}-8\hat{j}-5\hat{k}=\hat{i}\left( -y-z \right)-\hat{j}\left( -x+3z \right)+\hat{k}\left( x+3y \right)\].
Comparing the coefficients on both sides, we get \[y+z=1,3z-x=8,x+3y=-5\].
We know that \[b\times a=-\left( a\times b \right)\]. Thus, we have \[b\times a=-\left( -\hat{i}-8\hat{j}-5\hat{k} \right)=\hat{i}+8\hat{j}+5\hat{k}\].
Now, we will evaluate the value of \[r\times a\]. Thus, we have \[r\times a=\left| \begin{matrix}
{\hat{i}} & {\hat{j}} & {\hat{k}} \\
x & y & z \\
1 & -2 & 3 \\
\end{matrix} \right|=\hat{i}\left( 3y+2z \right)-\hat{j}\left( 3x-z \right)+\hat{k}\left( -2x-y \right)\].
As we have \[r\times a=b\times a\], we have \[\hat{i}+8\hat{j}+5\hat{k}=\hat{i}\left( 3y+2z \right)-\hat{j}\left( -z+3x \right)+\hat{k}\left( -2x-y \right)\].
Comparing the coefficients on both sides, we get \[1=3y+2z,8=z-3x,5=-2x-y\].
Thus, we have the equations \[y+z=1,3z-x=8,x+3y=-5\] and \[1=3y+2z,8=z-3x,5=-2x-y\]. We will now solve these equations by elimination method.
Multiplying equation \[y+z=1\] with \[2\] and subtracting it from equation \[1=3y+2z\], we get \[3y+2z-2\left( y+z \right)=1-2\].
\[\Rightarrow y=-1\]
Substituting the value \[y=-1\] in equation \[5=-y-2x\] , we have \[5=1-2x\]. Further solving, we get \[2x=-4\Rightarrow x=-2\].
Substituting the value \[x=-2\] in equation \[3z-x=8\] , we have \[3z-\left( -2 \right)=8\]. Further solving, we get \[3z=6\Rightarrow z=2\].
Thus, we have \[r=x\hat{i}+y\hat{j}+z\hat{k}=-2\hat{i}-\hat{j}+2\hat{k}\].
We want to find the unit vector in the direction of the vector \[r\]. We will divide it by the value of \[\left| r \right|\].
We have \[\left| r \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}=\sqrt{{{\left( -2 \right)}^{2}}+{{\left( -1 \right)}^{2}}+{{\left( 2 \right)}^{2}}}=\sqrt{9}=\pm 3\].
Hence, the unit vector in direction of \[r\] is \[\dfrac{r}{\left| r \right|}=\pm \dfrac{1}{3}\left( -2\hat{i}-\hat{j}+2\hat{k} \right)\], which is option (b).
Note: We should observe that the vector \[r\] lies in the plane perpendicular to both \[a\] and \[b\]. Also, one must keep in mind that we have to find the unit vector, not just any vector satisfying the conditions. We can also find the value of \[b\times a\] by substituting the values in the matrix and finding its value. However, it will be time consuming. Thus, it’s better to use \[b\times a=-\left( a\times b \right)\].
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

