# If \[a=\hat{i}-2\hat{j}+3\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\] and \[r\times a=b\times a,r\times b=a\times b\], then a unit vector in the direction of \[r\] is

(a) \[\pm \dfrac{1}{3}\left( -2\hat{i}+\hat{j}-\hat{k} \right)\]

(b) \[\pm \dfrac{1}{3}\left( -2\hat{i}-\hat{j}+2\hat{k} \right)\]

(c) \[\pm \dfrac{1}{3}\left( -2\hat{i}-\hat{j}-2\hat{k} \right)\]

(d) None of these

Answer

Verified

362.4k+ views

Hint: Use a cross product of two vectors to find the value of \[b\times a\] and \[a\times b\]. Assume the vector \[r\] as \[r=x\hat{i}+y\hat{j}+z\hat{k}\] and write the equations satisfying the given conditions. Solve those equations to get the value of the vector \[r\].

Complete step-by-step answer:

We have two vectors \[a=\hat{i}-2\hat{j}+3\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\]. There exists a third vector \[r\] such that \[r\times a=b\times a,r\times b=a\times b\]. We will form equations satisfying the given properties to find a unit vector in the direction of the vector \[r\].

Let’s assume that we can write the vector \[r\] as \[r=x\hat{i}+y\hat{j}+z\hat{k}\].

We will now find the value of \[b\times a\] where \[a=\hat{i}-2\hat{j}+3\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\].

We know that if there are two vectors \[a={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}\] and \[b={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}\], then we have \[a\times b=\left| \begin{matrix}

{\hat{i}} & {\hat{j}} & {\hat{k}} \\

{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\

{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\

\end{matrix} \right|\] as the value of cross multiplication of vectors \[a={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}\] and \[b={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}\].

Thus, when \[a=\hat{i}-2\hat{j}+3\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\], we have \[a\times b=\left| \begin{matrix}

{\hat{i}} & {\hat{j}} & {\hat{k}} \\

1 & -2 & 3 \\

-3 & 1 & -1 \\

\end{matrix} \right|=\hat{i}\left( 2-3 \right)-\hat{j}\left( -1+9 \right)+\hat{k}\left( 1-6 \right)=-\hat{i}-8\hat{j}-5\hat{k}\].

Now, we will evaluate the value of \[r\times b\] where \[r=x\hat{i}+y\hat{j}+z\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\]. Thus, we have \[r\times b=\left| \begin{matrix}

{\hat{i}} & {\hat{j}} & {\hat{k}} \\

x & y & z \\

-3 & 1 & -1 \\

\end{matrix} \right|=\hat{i}\left( -y-z \right)-\hat{j}\left( -x+3z \right)+\hat{k}\left( x+3y \right)\].

As we have \[r\times b=a\times b\], we have \[-\hat{i}-8\hat{j}-5\hat{k}=\hat{i}\left( -y-z \right)-\hat{j}\left( -x+3z \right)+\hat{k}\left( x+3y \right)\].

Comparing the coefficients on both sides, we get \[y+z=1,3z-x=8,x+3y=-5\].

We know that \[b\times a=-\left( a\times b \right)\]. Thus, we have \[b\times a=-\left( -\hat{i}-8\hat{j}-5\hat{k} \right)=\hat{i}+8\hat{j}+5\hat{k}\].

Now, we will evaluate the value of \[r\times a\]. Thus, we have \[r\times a=\left| \begin{matrix}

{\hat{i}} & {\hat{j}} & {\hat{k}} \\

x & y & z \\

1 & -2 & 3 \\

\end{matrix} \right|=\hat{i}\left( 3y+2z \right)-\hat{j}\left( 3x-z \right)+\hat{k}\left( -2x-y \right)\].

As we have \[r\times a=b\times a\], we have \[\hat{i}+8\hat{j}+5\hat{k}=\hat{i}\left( 3y+2z \right)-\hat{j}\left( -z+3x \right)+\hat{k}\left( -2x-y \right)\].

Comparing the coefficients on both sides, we get \[1=3y+2z,8=z-3x,5=-2x-y\].

Thus, we have the equations \[y+z=1,3z-x=8,x+3y=-5\] and \[1=3y+2z,8=z-3x,5=-2x-y\]. We will now solve these equations by elimination method.

Multiplying equation \[y+z=1\] with \[2\] and subtracting it from equation \[1=3y+2z\], we get \[3y+2z-2\left( y+z \right)=1-2\].

\[\Rightarrow y=-1\]

Substituting the value \[y=-1\] in equation \[5=-y-2x\] , we have \[5=1-2x\]. Further solving, we get \[2x=-4\Rightarrow x=-2\].

Substituting the value \[x=-2\] in equation \[3z-x=8\] , we have \[3z-\left( -2 \right)=8\]. Further solving, we get \[3z=6\Rightarrow z=2\].

Thus, we have \[r=x\hat{i}+y\hat{j}+z\hat{k}=-2\hat{i}-\hat{j}+2\hat{k}\].

We want to find the unit vector in the direction of the vector \[r\]. We will divide it by the value of \[\left| r \right|\].

We have \[\left| r \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}=\sqrt{{{\left( -2 \right)}^{2}}+{{\left( -1 \right)}^{2}}+{{\left( 2 \right)}^{2}}}=\sqrt{9}=\pm 3\].

Hence, the unit vector in direction of \[r\] is \[\dfrac{r}{\left| r \right|}=\pm \dfrac{1}{3}\left( -2\hat{i}-\hat{j}+2\hat{k} \right)\], which is option (b).

Note: We should observe that the vector \[r\] lies in the plane perpendicular to both \[a\] and \[b\]. Also, one must keep in mind that we have to find the unit vector, not just any vector satisfying the conditions. We can also find the value of \[b\times a\] by substituting the values in the matrix and finding its value. However, it will be time consuming. Thus, it’s better to use \[b\times a=-\left( a\times b \right)\].

Complete step-by-step answer:

We have two vectors \[a=\hat{i}-2\hat{j}+3\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\]. There exists a third vector \[r\] such that \[r\times a=b\times a,r\times b=a\times b\]. We will form equations satisfying the given properties to find a unit vector in the direction of the vector \[r\].

Let’s assume that we can write the vector \[r\] as \[r=x\hat{i}+y\hat{j}+z\hat{k}\].

We will now find the value of \[b\times a\] where \[a=\hat{i}-2\hat{j}+3\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\].

We know that if there are two vectors \[a={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}\] and \[b={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}\], then we have \[a\times b=\left| \begin{matrix}

{\hat{i}} & {\hat{j}} & {\hat{k}} \\

{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\

{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\

\end{matrix} \right|\] as the value of cross multiplication of vectors \[a={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}\] and \[b={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}\].

Thus, when \[a=\hat{i}-2\hat{j}+3\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\], we have \[a\times b=\left| \begin{matrix}

{\hat{i}} & {\hat{j}} & {\hat{k}} \\

1 & -2 & 3 \\

-3 & 1 & -1 \\

\end{matrix} \right|=\hat{i}\left( 2-3 \right)-\hat{j}\left( -1+9 \right)+\hat{k}\left( 1-6 \right)=-\hat{i}-8\hat{j}-5\hat{k}\].

Now, we will evaluate the value of \[r\times b\] where \[r=x\hat{i}+y\hat{j}+z\hat{k}\] and \[b=-3\hat{i}+\hat{j}-\hat{k}\]. Thus, we have \[r\times b=\left| \begin{matrix}

{\hat{i}} & {\hat{j}} & {\hat{k}} \\

x & y & z \\

-3 & 1 & -1 \\

\end{matrix} \right|=\hat{i}\left( -y-z \right)-\hat{j}\left( -x+3z \right)+\hat{k}\left( x+3y \right)\].

As we have \[r\times b=a\times b\], we have \[-\hat{i}-8\hat{j}-5\hat{k}=\hat{i}\left( -y-z \right)-\hat{j}\left( -x+3z \right)+\hat{k}\left( x+3y \right)\].

Comparing the coefficients on both sides, we get \[y+z=1,3z-x=8,x+3y=-5\].

We know that \[b\times a=-\left( a\times b \right)\]. Thus, we have \[b\times a=-\left( -\hat{i}-8\hat{j}-5\hat{k} \right)=\hat{i}+8\hat{j}+5\hat{k}\].

Now, we will evaluate the value of \[r\times a\]. Thus, we have \[r\times a=\left| \begin{matrix}

{\hat{i}} & {\hat{j}} & {\hat{k}} \\

x & y & z \\

1 & -2 & 3 \\

\end{matrix} \right|=\hat{i}\left( 3y+2z \right)-\hat{j}\left( 3x-z \right)+\hat{k}\left( -2x-y \right)\].

As we have \[r\times a=b\times a\], we have \[\hat{i}+8\hat{j}+5\hat{k}=\hat{i}\left( 3y+2z \right)-\hat{j}\left( -z+3x \right)+\hat{k}\left( -2x-y \right)\].

Comparing the coefficients on both sides, we get \[1=3y+2z,8=z-3x,5=-2x-y\].

Thus, we have the equations \[y+z=1,3z-x=8,x+3y=-5\] and \[1=3y+2z,8=z-3x,5=-2x-y\]. We will now solve these equations by elimination method.

Multiplying equation \[y+z=1\] with \[2\] and subtracting it from equation \[1=3y+2z\], we get \[3y+2z-2\left( y+z \right)=1-2\].

\[\Rightarrow y=-1\]

Substituting the value \[y=-1\] in equation \[5=-y-2x\] , we have \[5=1-2x\]. Further solving, we get \[2x=-4\Rightarrow x=-2\].

Substituting the value \[x=-2\] in equation \[3z-x=8\] , we have \[3z-\left( -2 \right)=8\]. Further solving, we get \[3z=6\Rightarrow z=2\].

Thus, we have \[r=x\hat{i}+y\hat{j}+z\hat{k}=-2\hat{i}-\hat{j}+2\hat{k}\].

We want to find the unit vector in the direction of the vector \[r\]. We will divide it by the value of \[\left| r \right|\].

We have \[\left| r \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}=\sqrt{{{\left( -2 \right)}^{2}}+{{\left( -1 \right)}^{2}}+{{\left( 2 \right)}^{2}}}=\sqrt{9}=\pm 3\].

Hence, the unit vector in direction of \[r\] is \[\dfrac{r}{\left| r \right|}=\pm \dfrac{1}{3}\left( -2\hat{i}-\hat{j}+2\hat{k} \right)\], which is option (b).

Note: We should observe that the vector \[r\] lies in the plane perpendicular to both \[a\] and \[b\]. Also, one must keep in mind that we have to find the unit vector, not just any vector satisfying the conditions. We can also find the value of \[b\times a\] by substituting the values in the matrix and finding its value. However, it will be time consuming. Thus, it’s better to use \[b\times a=-\left( a\times b \right)\].

Last updated date: 24th Sep 2023

•

Total views: 362.4k

•

Views today: 9.62k

Recently Updated Pages

What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What is the past tense of read class 10 english CBSE