
If $a,b,c$ are in A.P., ${a^2},{b^2},{c^2}$ are in H.P., then prove that either $a = b = c$ or $a,b, -
\dfrac{c}{2}$ form a G.P.
Answer
622.2k+ views
Hint: Use properties of AP and HP on given conditions to get the desired result, that is form two equations using AM and HM and simplify.
Step by step solution:
We know that the conditions to be in A.P., G.P., and H.P. of the terms \[x,y,z\] are \[2y = x + z{\text{
}},{\text{ }}{y^2} = xz{\text{ }},{\text{ and }}\dfrac{2}{y} = \dfrac{1}{x} + \dfrac{1}{z}\] respectively.
So, by using the above formulae we can solve this problem easily.
Given $a,b,c$ are in A.P.
i.e. \[2b = a + c\]
Which can be converted into \[b - a = c - b............................\left( 1 \right)\]
And ${a^2},{b^2},{c^2}$ are in H.P.
i.e. \[\dfrac{2}{{{b^2}}} = \dfrac{1}{{{a^2}}} + \dfrac{1}{{{c^2}}}\]
Which can be written as
\[
\dfrac{1}{{{b^2}}} - \dfrac{1}{{{a^2}}} = \dfrac{1}{{{c^2}}} - \dfrac{1}{{{b^2}}} \\
\\
\dfrac{{{a^2} - {b^2}}}{{{a^2}{b^2}}} = \dfrac{{{b^2} - {c^2}}}{{{b^2}{c^2}}} \\
\]
By using the formula \[{p^2} - {q^2} = \left( {p + q} \right)\left( {p - q} \right)\]we can write as
\[\dfrac{{\left( {a - b} \right)\left( {a + b} \right)}}{{{a^2}{b^2}}} = \dfrac{{\left( {b - c} \right)\left( {b +
c} \right)}}{{{b^2}{c^2}}}.........................\left( 2 \right)\]
From equations (1) and (2) we get
\[
\dfrac{{\left( {a + b} \right)}}{{{a^2}}} = \dfrac{{\left( {b + c} \right)}}{{{c^2}}} \\
\\
a{c^2} + b{c^2} = b{a^2} + c{a^2} \\
\\
a{c^2} - c{a^2} + b{c^2} - b{a^2} = 0 \\
\\
ac\left( {c - a} \right) + b\left( {{c^2} - {a^2}} \right) = 0 \\
\\
ac\left( {c - a} \right) + b\left( {c - a} \right)\left( {c + a} \right) = 0 \\
\\
\left[ {ac + b\left( {c + a} \right)} \right]\left( {c - a} \right) = 0 \\
\]
Either \[ac + b\left( {c + a} \right) = 0\] or \[\left( {c - a} \right) = 0\]
If \[\left( {c - a} \right) = 0\] then \[a = c...............................(3)\]
Now consider \[ac + b\left( {c + a} \right) = 0\]
\[
\Rightarrow ac + b\left( {2b} \right) = 0{\text{ [}}\because 2b = a + c] \\
\Rightarrow ac + 2{b^2} = 0 \\
\Rightarrow 2{b^2} = - ac \\
\Rightarrow {b^2} = - \dfrac{{ac}}{2} \\
\]
Therefore \[a,b,\dfrac{{ - c}}{2}\] are in G.P.
We have \[2b = a + c\] and \[a = c\]
So,
\[
2b = a + a \\
2b = 2a \\
\therefore a = b \\
\]
Therefore \[a = b = c\]
Hence proved that \[a = b = c\] or \[a,b,\dfrac{{ - c}}{2}\] are in G.P.
Note: Harmonic Progression is the reciprocal of the values of the terms in Arithmetic Progression.
And equate each equation to zero to know all the values.
Step by step solution:
We know that the conditions to be in A.P., G.P., and H.P. of the terms \[x,y,z\] are \[2y = x + z{\text{
}},{\text{ }}{y^2} = xz{\text{ }},{\text{ and }}\dfrac{2}{y} = \dfrac{1}{x} + \dfrac{1}{z}\] respectively.
So, by using the above formulae we can solve this problem easily.
Given $a,b,c$ are in A.P.
i.e. \[2b = a + c\]
Which can be converted into \[b - a = c - b............................\left( 1 \right)\]
And ${a^2},{b^2},{c^2}$ are in H.P.
i.e. \[\dfrac{2}{{{b^2}}} = \dfrac{1}{{{a^2}}} + \dfrac{1}{{{c^2}}}\]
Which can be written as
\[
\dfrac{1}{{{b^2}}} - \dfrac{1}{{{a^2}}} = \dfrac{1}{{{c^2}}} - \dfrac{1}{{{b^2}}} \\
\\
\dfrac{{{a^2} - {b^2}}}{{{a^2}{b^2}}} = \dfrac{{{b^2} - {c^2}}}{{{b^2}{c^2}}} \\
\]
By using the formula \[{p^2} - {q^2} = \left( {p + q} \right)\left( {p - q} \right)\]we can write as
\[\dfrac{{\left( {a - b} \right)\left( {a + b} \right)}}{{{a^2}{b^2}}} = \dfrac{{\left( {b - c} \right)\left( {b +
c} \right)}}{{{b^2}{c^2}}}.........................\left( 2 \right)\]
From equations (1) and (2) we get
\[
\dfrac{{\left( {a + b} \right)}}{{{a^2}}} = \dfrac{{\left( {b + c} \right)}}{{{c^2}}} \\
\\
a{c^2} + b{c^2} = b{a^2} + c{a^2} \\
\\
a{c^2} - c{a^2} + b{c^2} - b{a^2} = 0 \\
\\
ac\left( {c - a} \right) + b\left( {{c^2} - {a^2}} \right) = 0 \\
\\
ac\left( {c - a} \right) + b\left( {c - a} \right)\left( {c + a} \right) = 0 \\
\\
\left[ {ac + b\left( {c + a} \right)} \right]\left( {c - a} \right) = 0 \\
\]
Either \[ac + b\left( {c + a} \right) = 0\] or \[\left( {c - a} \right) = 0\]
If \[\left( {c - a} \right) = 0\] then \[a = c...............................(3)\]
Now consider \[ac + b\left( {c + a} \right) = 0\]
\[
\Rightarrow ac + b\left( {2b} \right) = 0{\text{ [}}\because 2b = a + c] \\
\Rightarrow ac + 2{b^2} = 0 \\
\Rightarrow 2{b^2} = - ac \\
\Rightarrow {b^2} = - \dfrac{{ac}}{2} \\
\]
Therefore \[a,b,\dfrac{{ - c}}{2}\] are in G.P.
We have \[2b = a + c\] and \[a = c\]
So,
\[
2b = a + a \\
2b = 2a \\
\therefore a = b \\
\]
Therefore \[a = b = c\]
Hence proved that \[a = b = c\] or \[a,b,\dfrac{{ - c}}{2}\] are in G.P.
Note: Harmonic Progression is the reciprocal of the values of the terms in Arithmetic Progression.
And equate each equation to zero to know all the values.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

