
If $a,b,c$ are in A.P., ${a^2},{b^2},{c^2}$ are in H.P., then prove that either $a = b = c$ or $a,b, -
\dfrac{c}{2}$ form a G.P.
Answer
609k+ views
Hint: Use properties of AP and HP on given conditions to get the desired result, that is form two equations using AM and HM and simplify.
Step by step solution:
We know that the conditions to be in A.P., G.P., and H.P. of the terms \[x,y,z\] are \[2y = x + z{\text{
}},{\text{ }}{y^2} = xz{\text{ }},{\text{ and }}\dfrac{2}{y} = \dfrac{1}{x} + \dfrac{1}{z}\] respectively.
So, by using the above formulae we can solve this problem easily.
Given $a,b,c$ are in A.P.
i.e. \[2b = a + c\]
Which can be converted into \[b - a = c - b............................\left( 1 \right)\]
And ${a^2},{b^2},{c^2}$ are in H.P.
i.e. \[\dfrac{2}{{{b^2}}} = \dfrac{1}{{{a^2}}} + \dfrac{1}{{{c^2}}}\]
Which can be written as
\[
\dfrac{1}{{{b^2}}} - \dfrac{1}{{{a^2}}} = \dfrac{1}{{{c^2}}} - \dfrac{1}{{{b^2}}} \\
\\
\dfrac{{{a^2} - {b^2}}}{{{a^2}{b^2}}} = \dfrac{{{b^2} - {c^2}}}{{{b^2}{c^2}}} \\
\]
By using the formula \[{p^2} - {q^2} = \left( {p + q} \right)\left( {p - q} \right)\]we can write as
\[\dfrac{{\left( {a - b} \right)\left( {a + b} \right)}}{{{a^2}{b^2}}} = \dfrac{{\left( {b - c} \right)\left( {b +
c} \right)}}{{{b^2}{c^2}}}.........................\left( 2 \right)\]
From equations (1) and (2) we get
\[
\dfrac{{\left( {a + b} \right)}}{{{a^2}}} = \dfrac{{\left( {b + c} \right)}}{{{c^2}}} \\
\\
a{c^2} + b{c^2} = b{a^2} + c{a^2} \\
\\
a{c^2} - c{a^2} + b{c^2} - b{a^2} = 0 \\
\\
ac\left( {c - a} \right) + b\left( {{c^2} - {a^2}} \right) = 0 \\
\\
ac\left( {c - a} \right) + b\left( {c - a} \right)\left( {c + a} \right) = 0 \\
\\
\left[ {ac + b\left( {c + a} \right)} \right]\left( {c - a} \right) = 0 \\
\]
Either \[ac + b\left( {c + a} \right) = 0\] or \[\left( {c - a} \right) = 0\]
If \[\left( {c - a} \right) = 0\] then \[a = c...............................(3)\]
Now consider \[ac + b\left( {c + a} \right) = 0\]
\[
\Rightarrow ac + b\left( {2b} \right) = 0{\text{ [}}\because 2b = a + c] \\
\Rightarrow ac + 2{b^2} = 0 \\
\Rightarrow 2{b^2} = - ac \\
\Rightarrow {b^2} = - \dfrac{{ac}}{2} \\
\]
Therefore \[a,b,\dfrac{{ - c}}{2}\] are in G.P.
We have \[2b = a + c\] and \[a = c\]
So,
\[
2b = a + a \\
2b = 2a \\
\therefore a = b \\
\]
Therefore \[a = b = c\]
Hence proved that \[a = b = c\] or \[a,b,\dfrac{{ - c}}{2}\] are in G.P.
Note: Harmonic Progression is the reciprocal of the values of the terms in Arithmetic Progression.
And equate each equation to zero to know all the values.
Step by step solution:
We know that the conditions to be in A.P., G.P., and H.P. of the terms \[x,y,z\] are \[2y = x + z{\text{
}},{\text{ }}{y^2} = xz{\text{ }},{\text{ and }}\dfrac{2}{y} = \dfrac{1}{x} + \dfrac{1}{z}\] respectively.
So, by using the above formulae we can solve this problem easily.
Given $a,b,c$ are in A.P.
i.e. \[2b = a + c\]
Which can be converted into \[b - a = c - b............................\left( 1 \right)\]
And ${a^2},{b^2},{c^2}$ are in H.P.
i.e. \[\dfrac{2}{{{b^2}}} = \dfrac{1}{{{a^2}}} + \dfrac{1}{{{c^2}}}\]
Which can be written as
\[
\dfrac{1}{{{b^2}}} - \dfrac{1}{{{a^2}}} = \dfrac{1}{{{c^2}}} - \dfrac{1}{{{b^2}}} \\
\\
\dfrac{{{a^2} - {b^2}}}{{{a^2}{b^2}}} = \dfrac{{{b^2} - {c^2}}}{{{b^2}{c^2}}} \\
\]
By using the formula \[{p^2} - {q^2} = \left( {p + q} \right)\left( {p - q} \right)\]we can write as
\[\dfrac{{\left( {a - b} \right)\left( {a + b} \right)}}{{{a^2}{b^2}}} = \dfrac{{\left( {b - c} \right)\left( {b +
c} \right)}}{{{b^2}{c^2}}}.........................\left( 2 \right)\]
From equations (1) and (2) we get
\[
\dfrac{{\left( {a + b} \right)}}{{{a^2}}} = \dfrac{{\left( {b + c} \right)}}{{{c^2}}} \\
\\
a{c^2} + b{c^2} = b{a^2} + c{a^2} \\
\\
a{c^2} - c{a^2} + b{c^2} - b{a^2} = 0 \\
\\
ac\left( {c - a} \right) + b\left( {{c^2} - {a^2}} \right) = 0 \\
\\
ac\left( {c - a} \right) + b\left( {c - a} \right)\left( {c + a} \right) = 0 \\
\\
\left[ {ac + b\left( {c + a} \right)} \right]\left( {c - a} \right) = 0 \\
\]
Either \[ac + b\left( {c + a} \right) = 0\] or \[\left( {c - a} \right) = 0\]
If \[\left( {c - a} \right) = 0\] then \[a = c...............................(3)\]
Now consider \[ac + b\left( {c + a} \right) = 0\]
\[
\Rightarrow ac + b\left( {2b} \right) = 0{\text{ [}}\because 2b = a + c] \\
\Rightarrow ac + 2{b^2} = 0 \\
\Rightarrow 2{b^2} = - ac \\
\Rightarrow {b^2} = - \dfrac{{ac}}{2} \\
\]
Therefore \[a,b,\dfrac{{ - c}}{2}\] are in G.P.
We have \[2b = a + c\] and \[a = c\]
So,
\[
2b = a + a \\
2b = 2a \\
\therefore a = b \\
\]
Therefore \[a = b = c\]
Hence proved that \[a = b = c\] or \[a,b,\dfrac{{ - c}}{2}\] are in G.P.
Note: Harmonic Progression is the reciprocal of the values of the terms in Arithmetic Progression.
And equate each equation to zero to know all the values.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

