Answer
Verified
485.4k+ views
Hint: Two vectors are collinear if they are in the same line. Use formula $\overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{B}}\,=\left( \overset{\to }{\mathop{A}}\, \right)\left( \overset{\to }{\mathop{B}}\, \right)\cos \theta $ where $\theta $is angle between $\overset{\to }{\mathop{A}}\,\text{ and }\overset{\to }{\mathop{B}}\,$.
Complete step-by-step answer:
Here, we have two vectors given as $\overset{\to }{\mathop{a}}\,=2i-j-mk\text{ and }\overset{\to }{\mathop{b}}\,=\dfrac{4}{7}i-\dfrac{2}{7}j+2k.$
Now, we have to find value of m if $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$ are collinear.
As, we know collinear means in a line, that is if two vectors $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$ are collinear then they lie in the same line.
In another language, we can say that if two vectors are collinear then the angle between them is $0{}^\circ $.
Hence, $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$ have angle $0{}^\circ $ between them.
Now, we know dot product of two vectors can be given by;
$\overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{B}}\,=\left( \overset{\to }{\mathop{A}}\, \right)\left( \overset{\to }{\mathop{B}}\, \right)\cos \theta $
Where $\theta $ is angle between $\overset{\to }{\mathop{A}}\,\text{ and }\overset{\to }{\mathop{B}}\,$.
As, we have two vectors $\overset{\to }{\mathop{a}}\,=2i-j-mk\text{ and }\overset{\to }{\mathop{b}}\,=\dfrac{4}{7}i-\dfrac{2}{7}j+2\overset{\wedge }{\mathop{k}}\,$ which have $0{}^\circ $ between them.
Hence,
$\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|\cos \theta $………………….(1)
We know magnitude of any vector $\overset{\to }{\mathop{r}}\,=xi-yj-zk$ is given as;
$\left| \overset{\to }{\mathop{r}}\, \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
Hence, equation (1) can be written as
We know that $\cos 0{}^\circ =1$ and can simplify the above equation as;
$\begin{align}
& \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\sqrt{5+{{m}^{2}}}\sqrt{\dfrac{20}{49}+4}\left( 1 \right) \\
& \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\sqrt{5+{{m}^{2}}}\dfrac{\sqrt{216}}{7} \\
& or \\
& \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\dfrac{6\sqrt{6}}{7}\sqrt{5+{{m}^{2}}}.............\left( 2 \right) \\
\end{align}$
Now, we can rewrite $\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,$ in different way as;
$\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\left( 2i-j-mk \right).\left( \dfrac{4}{7}i-\dfrac{2}{7}j+2k \right)............\left( 3 \right)$
As we know the same vectors have angle $0{}^\circ $. Hence, angles between (i, j), (j, k) and (i, k) are perpendicular to each other as they are unit vectors through the x, y and z axis.
Hence, equation (3) can be solved as;
$\begin{align}
& \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=2\times \dfrac{4}{7}+1\times \dfrac{2}{7}-m\times 2 \\
& \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\dfrac{10}{7}-2m..............\left( 4 \right) \\
\end{align}$
Now, equation (2) and (4) have equal L.H.S hence R.H.S should also be equal to each other.
$\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\dfrac{6\sqrt{6}}{7}\sqrt{5+{{m}^{2}}}=\dfrac{10}{7}-2m$
Squaring both sides of the equation we get;
$\begin{align}
& \dfrac{216\left( 5+{{m}^{2}} \right)}{49}=\dfrac{{{\left( 10-14m \right)}^{2}}}{49} \\
& 216\times 5+216{{m}^{2}}=100+196{{m}^{2}}-280m \\
& 20{{m}^{2}}+280m+980=0 \\
\end{align}$
Dividing the whole equation by 20, we get;
${{m}^{2}}+14m+49=0$
Now, we can factorize above equation as;
${{\left( m+7 \right)}^{2}}=0$
Hence,
$\begin{align}
& m+7=0 \\
& m=-7 \\
\end{align}$
Therefore, for m = -7, $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$ as given in question are collinear.
Note: One can go wrong while putting angle between two vectors $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$which is $0{}^\circ $. He/she may put the angle be $180{}^\circ $ which is wrong.
Need to be careful with angles between $\overset{\wedge }{\mathop{i}}\,,\overset{\wedge }{\mathop{j\ }}\,$and $\overset{\wedge }{\mathop{k}}\,$ during evaluation of $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$.
Complete step-by-step answer:
Here, we have two vectors given as $\overset{\to }{\mathop{a}}\,=2i-j-mk\text{ and }\overset{\to }{\mathop{b}}\,=\dfrac{4}{7}i-\dfrac{2}{7}j+2k.$
Now, we have to find value of m if $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$ are collinear.
As, we know collinear means in a line, that is if two vectors $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$ are collinear then they lie in the same line.
In another language, we can say that if two vectors are collinear then the angle between them is $0{}^\circ $.
Hence, $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$ have angle $0{}^\circ $ between them.
Now, we know dot product of two vectors can be given by;
$\overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{B}}\,=\left( \overset{\to }{\mathop{A}}\, \right)\left( \overset{\to }{\mathop{B}}\, \right)\cos \theta $
Where $\theta $ is angle between $\overset{\to }{\mathop{A}}\,\text{ and }\overset{\to }{\mathop{B}}\,$.
As, we have two vectors $\overset{\to }{\mathop{a}}\,=2i-j-mk\text{ and }\overset{\to }{\mathop{b}}\,=\dfrac{4}{7}i-\dfrac{2}{7}j+2\overset{\wedge }{\mathop{k}}\,$ which have $0{}^\circ $ between them.
Hence,
$\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|\cos \theta $………………….(1)
We know magnitude of any vector $\overset{\to }{\mathop{r}}\,=xi-yj-zk$ is given as;
$\left| \overset{\to }{\mathop{r}}\, \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
Hence, equation (1) can be written as
We know that $\cos 0{}^\circ =1$ and can simplify the above equation as;
$\begin{align}
& \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\sqrt{5+{{m}^{2}}}\sqrt{\dfrac{20}{49}+4}\left( 1 \right) \\
& \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\sqrt{5+{{m}^{2}}}\dfrac{\sqrt{216}}{7} \\
& or \\
& \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\dfrac{6\sqrt{6}}{7}\sqrt{5+{{m}^{2}}}.............\left( 2 \right) \\
\end{align}$
Now, we can rewrite $\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,$ in different way as;
$\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\left( 2i-j-mk \right).\left( \dfrac{4}{7}i-\dfrac{2}{7}j+2k \right)............\left( 3 \right)$
As we know the same vectors have angle $0{}^\circ $. Hence, angles between (i, j), (j, k) and (i, k) are perpendicular to each other as they are unit vectors through the x, y and z axis.
Hence, equation (3) can be solved as;
$\begin{align}
& \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=2\times \dfrac{4}{7}+1\times \dfrac{2}{7}-m\times 2 \\
& \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\dfrac{10}{7}-2m..............\left( 4 \right) \\
\end{align}$
Now, equation (2) and (4) have equal L.H.S hence R.H.S should also be equal to each other.
$\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\dfrac{6\sqrt{6}}{7}\sqrt{5+{{m}^{2}}}=\dfrac{10}{7}-2m$
Squaring both sides of the equation we get;
$\begin{align}
& \dfrac{216\left( 5+{{m}^{2}} \right)}{49}=\dfrac{{{\left( 10-14m \right)}^{2}}}{49} \\
& 216\times 5+216{{m}^{2}}=100+196{{m}^{2}}-280m \\
& 20{{m}^{2}}+280m+980=0 \\
\end{align}$
Dividing the whole equation by 20, we get;
${{m}^{2}}+14m+49=0$
Now, we can factorize above equation as;
${{\left( m+7 \right)}^{2}}=0$
Hence,
$\begin{align}
& m+7=0 \\
& m=-7 \\
\end{align}$
Therefore, for m = -7, $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$ as given in question are collinear.
Note: One can go wrong while putting angle between two vectors $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$which is $0{}^\circ $. He/she may put the angle be $180{}^\circ $ which is wrong.
Need to be careful with angles between $\overset{\wedge }{\mathop{i}}\,,\overset{\wedge }{\mathop{j\ }}\,$and $\overset{\wedge }{\mathop{k}}\,$ during evaluation of $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
What is BLO What is the full form of BLO class 8 social science CBSE