
If $a=2\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,-m\overset{\wedge }{\mathop{k}}\,\text{ and }b=\dfrac{4}{7}\overset{\wedge }{\mathop{i}}\,-\dfrac{2}{7}\overset{\wedge }{\mathop{j}}\,+2\overset{\wedge }{\mathop{k}}\,$ are collinear, then the value of m is equal to
(A) -7
(B) -1
(C) 2
(D) 7
(E) -2
Answer
607.2k+ views
Hint: Two vectors are collinear if they are in the same line. Use formula $\overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{B}}\,=\left( \overset{\to }{\mathop{A}}\, \right)\left( \overset{\to }{\mathop{B}}\, \right)\cos \theta $ where $\theta $is angle between $\overset{\to }{\mathop{A}}\,\text{ and }\overset{\to }{\mathop{B}}\,$.
Complete step-by-step answer:
Here, we have two vectors given as $\overset{\to }{\mathop{a}}\,=2i-j-mk\text{ and }\overset{\to }{\mathop{b}}\,=\dfrac{4}{7}i-\dfrac{2}{7}j+2k.$
Now, we have to find value of m if $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$ are collinear.
As, we know collinear means in a line, that is if two vectors $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$ are collinear then they lie in the same line.
In another language, we can say that if two vectors are collinear then the angle between them is $0{}^\circ $.
Hence, $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$ have angle $0{}^\circ $ between them.
Now, we know dot product of two vectors can be given by;
$\overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{B}}\,=\left( \overset{\to }{\mathop{A}}\, \right)\left( \overset{\to }{\mathop{B}}\, \right)\cos \theta $
Where $\theta $ is angle between $\overset{\to }{\mathop{A}}\,\text{ and }\overset{\to }{\mathop{B}}\,$.
As, we have two vectors $\overset{\to }{\mathop{a}}\,=2i-j-mk\text{ and }\overset{\to }{\mathop{b}}\,=\dfrac{4}{7}i-\dfrac{2}{7}j+2\overset{\wedge }{\mathop{k}}\,$ which have $0{}^\circ $ between them.
Hence,
$\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|\cos \theta $………………….(1)
We know magnitude of any vector $\overset{\to }{\mathop{r}}\,=xi-yj-zk$ is given as;
$\left| \overset{\to }{\mathop{r}}\, \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
Hence, equation (1) can be written as
We know that $\cos 0{}^\circ =1$ and can simplify the above equation as;
$\begin{align}
& \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\sqrt{5+{{m}^{2}}}\sqrt{\dfrac{20}{49}+4}\left( 1 \right) \\
& \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\sqrt{5+{{m}^{2}}}\dfrac{\sqrt{216}}{7} \\
& or \\
& \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\dfrac{6\sqrt{6}}{7}\sqrt{5+{{m}^{2}}}.............\left( 2 \right) \\
\end{align}$
Now, we can rewrite $\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,$ in different way as;
$\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\left( 2i-j-mk \right).\left( \dfrac{4}{7}i-\dfrac{2}{7}j+2k \right)............\left( 3 \right)$
As we know the same vectors have angle $0{}^\circ $. Hence, angles between (i, j), (j, k) and (i, k) are perpendicular to each other as they are unit vectors through the x, y and z axis.
Hence, equation (3) can be solved as;
$\begin{align}
& \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=2\times \dfrac{4}{7}+1\times \dfrac{2}{7}-m\times 2 \\
& \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\dfrac{10}{7}-2m..............\left( 4 \right) \\
\end{align}$
Now, equation (2) and (4) have equal L.H.S hence R.H.S should also be equal to each other.
$\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\dfrac{6\sqrt{6}}{7}\sqrt{5+{{m}^{2}}}=\dfrac{10}{7}-2m$
Squaring both sides of the equation we get;
$\begin{align}
& \dfrac{216\left( 5+{{m}^{2}} \right)}{49}=\dfrac{{{\left( 10-14m \right)}^{2}}}{49} \\
& 216\times 5+216{{m}^{2}}=100+196{{m}^{2}}-280m \\
& 20{{m}^{2}}+280m+980=0 \\
\end{align}$
Dividing the whole equation by 20, we get;
${{m}^{2}}+14m+49=0$
Now, we can factorize above equation as;
${{\left( m+7 \right)}^{2}}=0$
Hence,
$\begin{align}
& m+7=0 \\
& m=-7 \\
\end{align}$
Therefore, for m = -7, $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$ as given in question are collinear.
Note: One can go wrong while putting angle between two vectors $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$which is $0{}^\circ $. He/she may put the angle be $180{}^\circ $ which is wrong.
Need to be careful with angles between $\overset{\wedge }{\mathop{i}}\,,\overset{\wedge }{\mathop{j\ }}\,$and $\overset{\wedge }{\mathop{k}}\,$ during evaluation of $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$.
Complete step-by-step answer:
Here, we have two vectors given as $\overset{\to }{\mathop{a}}\,=2i-j-mk\text{ and }\overset{\to }{\mathop{b}}\,=\dfrac{4}{7}i-\dfrac{2}{7}j+2k.$
Now, we have to find value of m if $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$ are collinear.
As, we know collinear means in a line, that is if two vectors $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$ are collinear then they lie in the same line.
In another language, we can say that if two vectors are collinear then the angle between them is $0{}^\circ $.
Hence, $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$ have angle $0{}^\circ $ between them.
Now, we know dot product of two vectors can be given by;
$\overset{\to }{\mathop{A}}\,.\overset{\to }{\mathop{B}}\,=\left( \overset{\to }{\mathop{A}}\, \right)\left( \overset{\to }{\mathop{B}}\, \right)\cos \theta $
Where $\theta $ is angle between $\overset{\to }{\mathop{A}}\,\text{ and }\overset{\to }{\mathop{B}}\,$.
As, we have two vectors $\overset{\to }{\mathop{a}}\,=2i-j-mk\text{ and }\overset{\to }{\mathop{b}}\,=\dfrac{4}{7}i-\dfrac{2}{7}j+2\overset{\wedge }{\mathop{k}}\,$ which have $0{}^\circ $ between them.
Hence,
$\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\left| \overset{\to }{\mathop{a}}\, \right|\left| \overset{\to }{\mathop{b}}\, \right|\cos \theta $………………….(1)
We know magnitude of any vector $\overset{\to }{\mathop{r}}\,=xi-yj-zk$ is given as;
$\left| \overset{\to }{\mathop{r}}\, \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$
Hence, equation (1) can be written as
We know that $\cos 0{}^\circ =1$ and can simplify the above equation as;
$\begin{align}
& \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\sqrt{5+{{m}^{2}}}\sqrt{\dfrac{20}{49}+4}\left( 1 \right) \\
& \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\sqrt{5+{{m}^{2}}}\dfrac{\sqrt{216}}{7} \\
& or \\
& \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\dfrac{6\sqrt{6}}{7}\sqrt{5+{{m}^{2}}}.............\left( 2 \right) \\
\end{align}$
Now, we can rewrite $\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,$ in different way as;
$\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\left( 2i-j-mk \right).\left( \dfrac{4}{7}i-\dfrac{2}{7}j+2k \right)............\left( 3 \right)$
As we know the same vectors have angle $0{}^\circ $. Hence, angles between (i, j), (j, k) and (i, k) are perpendicular to each other as they are unit vectors through the x, y and z axis.
Hence, equation (3) can be solved as;
$\begin{align}
& \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=2\times \dfrac{4}{7}+1\times \dfrac{2}{7}-m\times 2 \\
& \overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\dfrac{10}{7}-2m..............\left( 4 \right) \\
\end{align}$
Now, equation (2) and (4) have equal L.H.S hence R.H.S should also be equal to each other.
$\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,=\dfrac{6\sqrt{6}}{7}\sqrt{5+{{m}^{2}}}=\dfrac{10}{7}-2m$
Squaring both sides of the equation we get;
$\begin{align}
& \dfrac{216\left( 5+{{m}^{2}} \right)}{49}=\dfrac{{{\left( 10-14m \right)}^{2}}}{49} \\
& 216\times 5+216{{m}^{2}}=100+196{{m}^{2}}-280m \\
& 20{{m}^{2}}+280m+980=0 \\
\end{align}$
Dividing the whole equation by 20, we get;
${{m}^{2}}+14m+49=0$
Now, we can factorize above equation as;
${{\left( m+7 \right)}^{2}}=0$
Hence,
$\begin{align}
& m+7=0 \\
& m=-7 \\
\end{align}$
Therefore, for m = -7, $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$ as given in question are collinear.
Note: One can go wrong while putting angle between two vectors $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$which is $0{}^\circ $. He/she may put the angle be $180{}^\circ $ which is wrong.
Need to be careful with angles between $\overset{\wedge }{\mathop{i}}\,,\overset{\wedge }{\mathop{j\ }}\,$and $\overset{\wedge }{\mathop{k}}\,$ during evaluation of $\overset{\to }{\mathop{a}}\,\text{ and }\overset{\to }{\mathop{b}}\,$.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

