
If ${a_1},{a_2},{a_3},..........,{a_n}$are in H.P and$f(k) = \sum\limits_{r = 1}^n {{a_r} - {a_k}} $, then $\dfrac{{{a_1}}}{{f(1)}},\dfrac{{{a_2}}}{{f(2)}},\dfrac{{{a_3}}}{{f(3)}},.........,\dfrac{{{a_n}}}{{f(n)}}$ are in:
A) A.P.
B) G.P.
C) H.P.
D) None of them.
Answer
477.3k+ views
Hint: An Arithmetic Progression or Arithmetic sequence is a sequence of numbers such that the difference between the consecutive terms is constant.
A Harmonic Progression (H.P) is a progression formed by taking reciprocals of an Arithmetic Progression (A.P).
$H.P = \dfrac{1}{{A.P}}$
A sequence is a set of numbers which are written in some particular order. Basically sequences are of two types: finite ($1,3,5,7$) and infinite (${S_n} = {a_1} + {a_2} + ....... + {a_n}$) .
A series is a sum of the terms in a sequence. If there are $n$terms in the sequence and we evaluate the sum then we often write ${S_n}$ for the result, so that ${S_n} = {a_1} + {a_2} + ....... + {a_n}$.
${S_n} = {a_1} + {a_2} + ....... + {a_n}$.
Complete step-by-step answer:
Given that ${a_1},{a_2},{a_3},..........,{a_n}$are in H.P
As we know that $H.P = \dfrac{1}{{A.P}}$
$\therefore \dfrac{1}{{{a_1}}},\dfrac{1}{{{a_2}}},\dfrac{1}{{{a_3}}},.........,\dfrac{1}{{{a_n}}}$are in$A.P.$……………..(i)
We are given that$f(K) = \sum\limits_{r = 1}^n {{a_r} - {a_k}} $
As$\sum\limits_{r = 1}^n {{a_r}} = {S_n}$, so we can rewrite the above equation as:
$f(k) = \sum\limits_{r = 1}^n {{a_r} - {a_k}} = {S_n} - {a_k}.$
$ \Rightarrow \dfrac{{f(k)}}{{{a_k}}} - 1\forall k = 1,2,3,.....,n$……………….(ii)
As from (i) $\dfrac{1}{{{a_1}}},\dfrac{1}{{{a_2}}},\dfrac{1}{{{a_3}}},.........,\dfrac{1}{{{a_n}}}$are in$A.P.$
$ \Rightarrow \dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_1}}},\dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_2}}},.......,\dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_n}}}$are in$A.P.$
Now we subtract 1 from each term:
$ \Rightarrow \dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_1}}} - 1,\dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_2}}} - 1,.......,\dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_n}}} - 1$are in$A.P.$
By taking L.C.M of each term separately and on further solving
\[ \Rightarrow \dfrac{{{a_2} + ...... + {a_n}}}{{{a_1}}},\dfrac{{{a_1} + ...... + {a_n}}}{{{a_2}}},.......,\dfrac{{{a_1} + {a_2} + ...... + {a_{n - 1}}}}{{{a_n}}}\] are in$A.P.$……….(iii)
Now we can write ${a_2} + {a_{3 + }}........ + {a_n} = f(1),{a_1} + {a_3} + ........ + {a_n} = f(2),...........,{a_1} + {a_2} + ....... + {a_{n - 1}} = f(n)$
So we can write the equation (iii) as $\dfrac{{f(1)}}{{{a_1}}},\dfrac{{f(2)}}{{{a_2}}},..........,\dfrac{{f(n)}}{{{a_n}}}$ are in$A.P.$
As$H.P = \dfrac{1}{{A.P}}$
Therefore, $\dfrac{{{a_1}}}{{f(1)}},\dfrac{{{a_2}}}{{f(2)}},.........,\dfrac{{{a_n}}}{{f(n)}}$are in $H.P.$
Hence option C is the correct answer.
Note:Alternative Method:
We are given that: $f(K) = \sum\limits_{r = 1}^n {{a_r} - {a_k}} $
It can be further written as that $f(K) = [\sum\limits_{r = 1}^n {{a_r}] - {a_k} = {S_n} - {a_k}} $
Now, $\dfrac{{f(k)}}{{{a_k}}} = \dfrac{{{S_n}}}{{{a_k}}} - 1$
Also, it is given that ${a_1},{a_2},{a_3},..........,{a_n}$are in H.P
So, $\dfrac{1}{{{a_1}}},\dfrac{1}{{{a_2}}},\dfrac{1}{{{a_3}}},.........,\dfrac{1}{{{a_n}}}$ are in $A.P.$
Multiply each term with ${S_n}$ we get,
$\dfrac{{{S_n}}}{{{a_1}}},\dfrac{{{S_n}}}{{{a_2}}},\dfrac{{{S_n}}}{{{a_3}}},.........,\dfrac{{{S_n}}}{{{a_n}}}$ are in $A.P.$
Subtracting 1 from each term we get,
$\dfrac{{{S_n}}}{{{a_1}}} - 1,\dfrac{{{S_n}}}{{{a_2}}} - 1,\dfrac{{{S_n}}}{{{a_3}}} - 1,.........,\dfrac{{{S_n}}}{{{a_n}}} - 1$ are in$A.P.$
$\dfrac{{f(1)}}{{{a_1}}},\dfrac{{f(2)}}{{{a_2}}},..........,\dfrac{{f(n)}}{{{a_n}}}$ are in $A.P.$
As $H.P = \dfrac{1}{{A.P}}$
Therefore, $\dfrac{{{a_1}}}{{f(1)}},\dfrac{{{a_2}}}{{f(2)}},.........,\dfrac{{{a_n}}}{{f(n)}}$ are in $H.P.$
Hence the option C is the correct answer.
A Harmonic Progression (H.P) is a progression formed by taking reciprocals of an Arithmetic Progression (A.P).
$H.P = \dfrac{1}{{A.P}}$
A sequence is a set of numbers which are written in some particular order. Basically sequences are of two types: finite ($1,3,5,7$) and infinite (${S_n} = {a_1} + {a_2} + ....... + {a_n}$) .
A series is a sum of the terms in a sequence. If there are $n$terms in the sequence and we evaluate the sum then we often write ${S_n}$ for the result, so that ${S_n} = {a_1} + {a_2} + ....... + {a_n}$.
${S_n} = {a_1} + {a_2} + ....... + {a_n}$.
Complete step-by-step answer:
Given that ${a_1},{a_2},{a_3},..........,{a_n}$are in H.P
As we know that $H.P = \dfrac{1}{{A.P}}$
$\therefore \dfrac{1}{{{a_1}}},\dfrac{1}{{{a_2}}},\dfrac{1}{{{a_3}}},.........,\dfrac{1}{{{a_n}}}$are in$A.P.$……………..(i)
We are given that$f(K) = \sum\limits_{r = 1}^n {{a_r} - {a_k}} $
As$\sum\limits_{r = 1}^n {{a_r}} = {S_n}$, so we can rewrite the above equation as:
$f(k) = \sum\limits_{r = 1}^n {{a_r} - {a_k}} = {S_n} - {a_k}.$
$ \Rightarrow \dfrac{{f(k)}}{{{a_k}}} - 1\forall k = 1,2,3,.....,n$……………….(ii)
As from (i) $\dfrac{1}{{{a_1}}},\dfrac{1}{{{a_2}}},\dfrac{1}{{{a_3}}},.........,\dfrac{1}{{{a_n}}}$are in$A.P.$
$ \Rightarrow \dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_1}}},\dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_2}}},.......,\dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_n}}}$are in$A.P.$
Now we subtract 1 from each term:
$ \Rightarrow \dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_1}}} - 1,\dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_2}}} - 1,.......,\dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_n}}} - 1$are in$A.P.$
By taking L.C.M of each term separately and on further solving
\[ \Rightarrow \dfrac{{{a_2} + ...... + {a_n}}}{{{a_1}}},\dfrac{{{a_1} + ...... + {a_n}}}{{{a_2}}},.......,\dfrac{{{a_1} + {a_2} + ...... + {a_{n - 1}}}}{{{a_n}}}\] are in$A.P.$……….(iii)
Now we can write ${a_2} + {a_{3 + }}........ + {a_n} = f(1),{a_1} + {a_3} + ........ + {a_n} = f(2),...........,{a_1} + {a_2} + ....... + {a_{n - 1}} = f(n)$
So we can write the equation (iii) as $\dfrac{{f(1)}}{{{a_1}}},\dfrac{{f(2)}}{{{a_2}}},..........,\dfrac{{f(n)}}{{{a_n}}}$ are in$A.P.$
As$H.P = \dfrac{1}{{A.P}}$
Therefore, $\dfrac{{{a_1}}}{{f(1)}},\dfrac{{{a_2}}}{{f(2)}},.........,\dfrac{{{a_n}}}{{f(n)}}$are in $H.P.$
Hence option C is the correct answer.
Note:Alternative Method:
We are given that: $f(K) = \sum\limits_{r = 1}^n {{a_r} - {a_k}} $
It can be further written as that $f(K) = [\sum\limits_{r = 1}^n {{a_r}] - {a_k} = {S_n} - {a_k}} $
Now, $\dfrac{{f(k)}}{{{a_k}}} = \dfrac{{{S_n}}}{{{a_k}}} - 1$
Also, it is given that ${a_1},{a_2},{a_3},..........,{a_n}$are in H.P
So, $\dfrac{1}{{{a_1}}},\dfrac{1}{{{a_2}}},\dfrac{1}{{{a_3}}},.........,\dfrac{1}{{{a_n}}}$ are in $A.P.$
Multiply each term with ${S_n}$ we get,
$\dfrac{{{S_n}}}{{{a_1}}},\dfrac{{{S_n}}}{{{a_2}}},\dfrac{{{S_n}}}{{{a_3}}},.........,\dfrac{{{S_n}}}{{{a_n}}}$ are in $A.P.$
Subtracting 1 from each term we get,
$\dfrac{{{S_n}}}{{{a_1}}} - 1,\dfrac{{{S_n}}}{{{a_2}}} - 1,\dfrac{{{S_n}}}{{{a_3}}} - 1,.........,\dfrac{{{S_n}}}{{{a_n}}} - 1$ are in$A.P.$
$\dfrac{{f(1)}}{{{a_1}}},\dfrac{{f(2)}}{{{a_2}}},..........,\dfrac{{f(n)}}{{{a_n}}}$ are in $A.P.$
As $H.P = \dfrac{1}{{A.P}}$
Therefore, $\dfrac{{{a_1}}}{{f(1)}},\dfrac{{{a_2}}}{{f(2)}},.........,\dfrac{{{a_n}}}{{f(n)}}$ are in $H.P.$
Hence the option C is the correct answer.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
