
If ${a_1},{a_2},{a_3},..........,{a_n}$are in H.P and$f(k) = \sum\limits_{r = 1}^n {{a_r} - {a_k}} $, then $\dfrac{{{a_1}}}{{f(1)}},\dfrac{{{a_2}}}{{f(2)}},\dfrac{{{a_3}}}{{f(3)}},.........,\dfrac{{{a_n}}}{{f(n)}}$ are in:
A) A.P.
B) G.P.
C) H.P.
D) None of them.
Answer
568.8k+ views
Hint: An Arithmetic Progression or Arithmetic sequence is a sequence of numbers such that the difference between the consecutive terms is constant.
A Harmonic Progression (H.P) is a progression formed by taking reciprocals of an Arithmetic Progression (A.P).
$H.P = \dfrac{1}{{A.P}}$
A sequence is a set of numbers which are written in some particular order. Basically sequences are of two types: finite ($1,3,5,7$) and infinite (${S_n} = {a_1} + {a_2} + ....... + {a_n}$) .
A series is a sum of the terms in a sequence. If there are $n$terms in the sequence and we evaluate the sum then we often write ${S_n}$ for the result, so that ${S_n} = {a_1} + {a_2} + ....... + {a_n}$.
${S_n} = {a_1} + {a_2} + ....... + {a_n}$.
Complete step-by-step answer:
Given that ${a_1},{a_2},{a_3},..........,{a_n}$are in H.P
As we know that $H.P = \dfrac{1}{{A.P}}$
$\therefore \dfrac{1}{{{a_1}}},\dfrac{1}{{{a_2}}},\dfrac{1}{{{a_3}}},.........,\dfrac{1}{{{a_n}}}$are in$A.P.$……………..(i)
We are given that$f(K) = \sum\limits_{r = 1}^n {{a_r} - {a_k}} $
As$\sum\limits_{r = 1}^n {{a_r}} = {S_n}$, so we can rewrite the above equation as:
$f(k) = \sum\limits_{r = 1}^n {{a_r} - {a_k}} = {S_n} - {a_k}.$
$ \Rightarrow \dfrac{{f(k)}}{{{a_k}}} - 1\forall k = 1,2,3,.....,n$……………….(ii)
As from (i) $\dfrac{1}{{{a_1}}},\dfrac{1}{{{a_2}}},\dfrac{1}{{{a_3}}},.........,\dfrac{1}{{{a_n}}}$are in$A.P.$
$ \Rightarrow \dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_1}}},\dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_2}}},.......,\dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_n}}}$are in$A.P.$
Now we subtract 1 from each term:
$ \Rightarrow \dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_1}}} - 1,\dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_2}}} - 1,.......,\dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_n}}} - 1$are in$A.P.$
By taking L.C.M of each term separately and on further solving
\[ \Rightarrow \dfrac{{{a_2} + ...... + {a_n}}}{{{a_1}}},\dfrac{{{a_1} + ...... + {a_n}}}{{{a_2}}},.......,\dfrac{{{a_1} + {a_2} + ...... + {a_{n - 1}}}}{{{a_n}}}\] are in$A.P.$……….(iii)
Now we can write ${a_2} + {a_{3 + }}........ + {a_n} = f(1),{a_1} + {a_3} + ........ + {a_n} = f(2),...........,{a_1} + {a_2} + ....... + {a_{n - 1}} = f(n)$
So we can write the equation (iii) as $\dfrac{{f(1)}}{{{a_1}}},\dfrac{{f(2)}}{{{a_2}}},..........,\dfrac{{f(n)}}{{{a_n}}}$ are in$A.P.$
As$H.P = \dfrac{1}{{A.P}}$
Therefore, $\dfrac{{{a_1}}}{{f(1)}},\dfrac{{{a_2}}}{{f(2)}},.........,\dfrac{{{a_n}}}{{f(n)}}$are in $H.P.$
Hence option C is the correct answer.
Note:Alternative Method:
We are given that: $f(K) = \sum\limits_{r = 1}^n {{a_r} - {a_k}} $
It can be further written as that $f(K) = [\sum\limits_{r = 1}^n {{a_r}] - {a_k} = {S_n} - {a_k}} $
Now, $\dfrac{{f(k)}}{{{a_k}}} = \dfrac{{{S_n}}}{{{a_k}}} - 1$
Also, it is given that ${a_1},{a_2},{a_3},..........,{a_n}$are in H.P
So, $\dfrac{1}{{{a_1}}},\dfrac{1}{{{a_2}}},\dfrac{1}{{{a_3}}},.........,\dfrac{1}{{{a_n}}}$ are in $A.P.$
Multiply each term with ${S_n}$ we get,
$\dfrac{{{S_n}}}{{{a_1}}},\dfrac{{{S_n}}}{{{a_2}}},\dfrac{{{S_n}}}{{{a_3}}},.........,\dfrac{{{S_n}}}{{{a_n}}}$ are in $A.P.$
Subtracting 1 from each term we get,
$\dfrac{{{S_n}}}{{{a_1}}} - 1,\dfrac{{{S_n}}}{{{a_2}}} - 1,\dfrac{{{S_n}}}{{{a_3}}} - 1,.........,\dfrac{{{S_n}}}{{{a_n}}} - 1$ are in$A.P.$
$\dfrac{{f(1)}}{{{a_1}}},\dfrac{{f(2)}}{{{a_2}}},..........,\dfrac{{f(n)}}{{{a_n}}}$ are in $A.P.$
As $H.P = \dfrac{1}{{A.P}}$
Therefore, $\dfrac{{{a_1}}}{{f(1)}},\dfrac{{{a_2}}}{{f(2)}},.........,\dfrac{{{a_n}}}{{f(n)}}$ are in $H.P.$
Hence the option C is the correct answer.
A Harmonic Progression (H.P) is a progression formed by taking reciprocals of an Arithmetic Progression (A.P).
$H.P = \dfrac{1}{{A.P}}$
A sequence is a set of numbers which are written in some particular order. Basically sequences are of two types: finite ($1,3,5,7$) and infinite (${S_n} = {a_1} + {a_2} + ....... + {a_n}$) .
A series is a sum of the terms in a sequence. If there are $n$terms in the sequence and we evaluate the sum then we often write ${S_n}$ for the result, so that ${S_n} = {a_1} + {a_2} + ....... + {a_n}$.
${S_n} = {a_1} + {a_2} + ....... + {a_n}$.
Complete step-by-step answer:
Given that ${a_1},{a_2},{a_3},..........,{a_n}$are in H.P
As we know that $H.P = \dfrac{1}{{A.P}}$
$\therefore \dfrac{1}{{{a_1}}},\dfrac{1}{{{a_2}}},\dfrac{1}{{{a_3}}},.........,\dfrac{1}{{{a_n}}}$are in$A.P.$……………..(i)
We are given that$f(K) = \sum\limits_{r = 1}^n {{a_r} - {a_k}} $
As$\sum\limits_{r = 1}^n {{a_r}} = {S_n}$, so we can rewrite the above equation as:
$f(k) = \sum\limits_{r = 1}^n {{a_r} - {a_k}} = {S_n} - {a_k}.$
$ \Rightarrow \dfrac{{f(k)}}{{{a_k}}} - 1\forall k = 1,2,3,.....,n$……………….(ii)
As from (i) $\dfrac{1}{{{a_1}}},\dfrac{1}{{{a_2}}},\dfrac{1}{{{a_3}}},.........,\dfrac{1}{{{a_n}}}$are in$A.P.$
$ \Rightarrow \dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_1}}},\dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_2}}},.......,\dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_n}}}$are in$A.P.$
Now we subtract 1 from each term:
$ \Rightarrow \dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_1}}} - 1,\dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_2}}} - 1,.......,\dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_n}}} - 1$are in$A.P.$
By taking L.C.M of each term separately and on further solving
\[ \Rightarrow \dfrac{{{a_2} + ...... + {a_n}}}{{{a_1}}},\dfrac{{{a_1} + ...... + {a_n}}}{{{a_2}}},.......,\dfrac{{{a_1} + {a_2} + ...... + {a_{n - 1}}}}{{{a_n}}}\] are in$A.P.$……….(iii)
Now we can write ${a_2} + {a_{3 + }}........ + {a_n} = f(1),{a_1} + {a_3} + ........ + {a_n} = f(2),...........,{a_1} + {a_2} + ....... + {a_{n - 1}} = f(n)$
So we can write the equation (iii) as $\dfrac{{f(1)}}{{{a_1}}},\dfrac{{f(2)}}{{{a_2}}},..........,\dfrac{{f(n)}}{{{a_n}}}$ are in$A.P.$
As$H.P = \dfrac{1}{{A.P}}$
Therefore, $\dfrac{{{a_1}}}{{f(1)}},\dfrac{{{a_2}}}{{f(2)}},.........,\dfrac{{{a_n}}}{{f(n)}}$are in $H.P.$
Hence option C is the correct answer.
Note:Alternative Method:
We are given that: $f(K) = \sum\limits_{r = 1}^n {{a_r} - {a_k}} $
It can be further written as that $f(K) = [\sum\limits_{r = 1}^n {{a_r}] - {a_k} = {S_n} - {a_k}} $
Now, $\dfrac{{f(k)}}{{{a_k}}} = \dfrac{{{S_n}}}{{{a_k}}} - 1$
Also, it is given that ${a_1},{a_2},{a_3},..........,{a_n}$are in H.P
So, $\dfrac{1}{{{a_1}}},\dfrac{1}{{{a_2}}},\dfrac{1}{{{a_3}}},.........,\dfrac{1}{{{a_n}}}$ are in $A.P.$
Multiply each term with ${S_n}$ we get,
$\dfrac{{{S_n}}}{{{a_1}}},\dfrac{{{S_n}}}{{{a_2}}},\dfrac{{{S_n}}}{{{a_3}}},.........,\dfrac{{{S_n}}}{{{a_n}}}$ are in $A.P.$
Subtracting 1 from each term we get,
$\dfrac{{{S_n}}}{{{a_1}}} - 1,\dfrac{{{S_n}}}{{{a_2}}} - 1,\dfrac{{{S_n}}}{{{a_3}}} - 1,.........,\dfrac{{{S_n}}}{{{a_n}}} - 1$ are in$A.P.$
$\dfrac{{f(1)}}{{{a_1}}},\dfrac{{f(2)}}{{{a_2}}},..........,\dfrac{{f(n)}}{{{a_n}}}$ are in $A.P.$
As $H.P = \dfrac{1}{{A.P}}$
Therefore, $\dfrac{{{a_1}}}{{f(1)}},\dfrac{{{a_2}}}{{f(2)}},.........,\dfrac{{{a_n}}}{{f(n)}}$ are in $H.P.$
Hence the option C is the correct answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

