Answer

Verified

417.6k+ views

**Hint:**We know that a vector has both length or magnitude and direction. The angle the vector makes with the axis give the direction or the orientation of the vector on any given space. Generally, a vector is said to make $\alpha,\beta$ and $\gamma$ with $X$,$Y$ and $Z$ axes respectively.

**Complete step by step answer:**

Given that the vector $\overrightarrow{A}$ makes angles $\alpha,\beta$ and $\gamma$with $X$,$Y$ and $Z$ axes respectively. This implies that the unit vector $\hat{a}$, also known as the directional vector is as shown in the figure. Then we can express the vector $\overrightarrow{A}$ as $\vec A=a_{x}\hat i+a_{y}\hat j+a_{z}\hat k$, and the unit vector $\hat{a}$ is given as, $\hat a=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}$

We can then express, the x,y,z components of the vectors with respect to the angles as the following:

$cos\alpha=\dfrac{a_{x}\hat i}{\hat a}$

$cos\beta=\dfrac{a_{y}\hat j}{\hat a}$

$cos\gamma=\dfrac{a_{z}\hat k}{\hat a}$

Squaring and adding, we get, $cos^{2}\alpha+cos^{2}\beta+cos^{2}\gamma=\dfrac{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}{\left(\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}\right)^{2}}=1$

Thus, $cos^{2}\alpha+cos^{2}\beta+cos^{2}\gamma=1$

But we need $sin^{2}\alpha+sin^{2}\beta+sin^{2}\gamma$

We know from trigonometry identities, that $sin^{2}\theta+cos^{2}\theta=1$

Then, we can write, $cos^{2}\alpha+cos^{2}\beta+cos^{2}\gamma=1-sin^{2}\alpha+1-sin^{2}\beta+1-sin^{2}\gamma=3-(sin^{2}\alpha+sin^{2}\beta+sin^{2}\gamma)$

Then,$3-(sin^{2}\alpha+sin^{2}\beta+sin^{2}\gamma)=1$

Or,$sin^{2}\alpha+sin^{2}\beta+sin^{2}\gamma=3-1=2$

Thus, $sin^{2}\alpha+sin^{2}\beta+sin^{2}\gamma=2$

**Hence C.$2$ is the answer.**

**Additional information:**

We know that two vectors can be added, subtracted, and multiplied. We also know that the algebraic laws such as commutativity, associativity and distributivity are valid to certain degree and not always applicable. If a scalar and a vector is multiplied, it is said to be scalar multiplication or dot product. If a vector and another vector are multiplied, then it is said to be cross product or vector multiplication.

**Note:**When we say a $\vec{AB}$, we mean that $A$ is carried to $B$ in a particular direction in the space. Also magnitude denoted as $|\vec{AB}|$ gives the distance between the points $A$ and $B$. these vectors are generally represented on the coordinate systems.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you graph the function fx 4x class 9 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE