
If a vector $\overrightarrow{A}$ makes angles $\alpha,\beta$ and $\gamma$ with $X$,$Y$ and $Z$ axes respectively then $sin^{2}\alpha+sin^{2}\beta+sin^{2}\gamma=$
\[\begin{align}
& A.0 \\
& B.1 \\
& C.2 \\
& D.3 \\
\end{align}\]
Answer
444.9k+ views
Hint: We know that a vector has both length or magnitude and direction. The angle the vector makes with the axis give the direction or the orientation of the vector on any given space. Generally, a vector is said to make $\alpha,\beta$ and $\gamma$ with $X$,$Y$ and $Z$ axes respectively.
Complete step by step answer:
Given that the vector $\overrightarrow{A}$ makes angles $\alpha,\beta$ and $\gamma$with $X$,$Y$ and $Z$ axes respectively. This implies that the unit vector $\hat{a}$, also known as the directional vector is as shown in the figure. Then we can express the vector $\overrightarrow{A}$ as $\vec A=a_{x}\hat i+a_{y}\hat j+a_{z}\hat k$, and the unit vector $\hat{a}$ is given as, $\hat a=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}$
We can then express, the x,y,z components of the vectors with respect to the angles as the following:
$cos\alpha=\dfrac{a_{x}\hat i}{\hat a}$
$cos\beta=\dfrac{a_{y}\hat j}{\hat a}$
$cos\gamma=\dfrac{a_{z}\hat k}{\hat a}$
Squaring and adding, we get, $cos^{2}\alpha+cos^{2}\beta+cos^{2}\gamma=\dfrac{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}{\left(\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}\right)^{2}}=1$
Thus, $cos^{2}\alpha+cos^{2}\beta+cos^{2}\gamma=1$
But we need $sin^{2}\alpha+sin^{2}\beta+sin^{2}\gamma$
We know from trigonometry identities, that $sin^{2}\theta+cos^{2}\theta=1$
Then, we can write, $cos^{2}\alpha+cos^{2}\beta+cos^{2}\gamma=1-sin^{2}\alpha+1-sin^{2}\beta+1-sin^{2}\gamma=3-(sin^{2}\alpha+sin^{2}\beta+sin^{2}\gamma)$
Then,$3-(sin^{2}\alpha+sin^{2}\beta+sin^{2}\gamma)=1$
Or,$sin^{2}\alpha+sin^{2}\beta+sin^{2}\gamma=3-1=2$
Thus, $sin^{2}\alpha+sin^{2}\beta+sin^{2}\gamma=2$
Hence C.$2$ is the answer.
Additional information:
We know that two vectors can be added, subtracted, and multiplied. We also know that the algebraic laws such as commutativity, associativity and distributivity are valid to certain degree and not always applicable. If a scalar and a vector is multiplied, it is said to be scalar multiplication or dot product. If a vector and another vector are multiplied, then it is said to be cross product or vector multiplication.
Note: When we say a $\vec{AB}$, we mean that $A$ is carried to $B$ in a particular direction in the space. Also magnitude denoted as $|\vec{AB}|$ gives the distance between the points $A$ and $B$. these vectors are generally represented on the coordinate systems.
Complete step by step answer:
Given that the vector $\overrightarrow{A}$ makes angles $\alpha,\beta$ and $\gamma$with $X$,$Y$ and $Z$ axes respectively. This implies that the unit vector $\hat{a}$, also known as the directional vector is as shown in the figure. Then we can express the vector $\overrightarrow{A}$ as $\vec A=a_{x}\hat i+a_{y}\hat j+a_{z}\hat k$, and the unit vector $\hat{a}$ is given as, $\hat a=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}$

We can then express, the x,y,z components of the vectors with respect to the angles as the following:
$cos\alpha=\dfrac{a_{x}\hat i}{\hat a}$
$cos\beta=\dfrac{a_{y}\hat j}{\hat a}$
$cos\gamma=\dfrac{a_{z}\hat k}{\hat a}$
Squaring and adding, we get, $cos^{2}\alpha+cos^{2}\beta+cos^{2}\gamma=\dfrac{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}{\left(\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}\right)^{2}}=1$
Thus, $cos^{2}\alpha+cos^{2}\beta+cos^{2}\gamma=1$
But we need $sin^{2}\alpha+sin^{2}\beta+sin^{2}\gamma$
We know from trigonometry identities, that $sin^{2}\theta+cos^{2}\theta=1$
Then, we can write, $cos^{2}\alpha+cos^{2}\beta+cos^{2}\gamma=1-sin^{2}\alpha+1-sin^{2}\beta+1-sin^{2}\gamma=3-(sin^{2}\alpha+sin^{2}\beta+sin^{2}\gamma)$
Then,$3-(sin^{2}\alpha+sin^{2}\beta+sin^{2}\gamma)=1$
Or,$sin^{2}\alpha+sin^{2}\beta+sin^{2}\gamma=3-1=2$
Thus, $sin^{2}\alpha+sin^{2}\beta+sin^{2}\gamma=2$
Hence C.$2$ is the answer.
Additional information:
We know that two vectors can be added, subtracted, and multiplied. We also know that the algebraic laws such as commutativity, associativity and distributivity are valid to certain degree and not always applicable. If a scalar and a vector is multiplied, it is said to be scalar multiplication or dot product. If a vector and another vector are multiplied, then it is said to be cross product or vector multiplication.
Note: When we say a $\vec{AB}$, we mean that $A$ is carried to $B$ in a particular direction in the space. Also magnitude denoted as $|\vec{AB}|$ gives the distance between the points $A$ and $B$. these vectors are generally represented on the coordinate systems.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
