
If a trigonometric equation is given as $\sin \left( \dfrac{\pi }{4}.\cot \theta \right)=\cos \left( \dfrac{\pi }{4}.\tan \theta \right)$, then $\theta $=
A) $n\pi +\left( \dfrac{\pi }{2} \right)$
B) $n\pi +\left( \dfrac{\pi }{3} \right)$
C) $n\pi +\left( \dfrac{\pi }{4} \right)$
D) $n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{4}$
Answer
592.2k+ views
Hint: We solve this problem by converting either sin to cos (or) cos to sin using the formula $\cos \theta =\sin \left( \dfrac{\pi }{2}-\theta \right)$ and then we equate both the angles. After changing the angles into the same trigonometric identity, we equate the angles and we solve them to find the value of $\theta $.
Complete step by step answer:
We use the formula,
$\cos \theta =\sin \left( \dfrac{\pi }{2}-\theta \right)$
Let us consider the given trigonometric equation
$\sin \left( \dfrac{\pi }{4}.\cot \theta \right)=\cos \left( \dfrac{\pi }{4}.\tan \theta \right)$
Now, we convert cos into sin to equate the angles. So, we get,
$\sin \left( \dfrac{\pi }{4}.\cot \theta \right)=\sin \left( \dfrac{\pi }{2}-\dfrac{\pi }{4}.\tan \theta \right)$
As the trigonometric terms on both sides are equal. By equating both the angles, we get
$\begin{align}
& \Rightarrow \dfrac{\pi }{4}.\cot \theta =\dfrac{\pi }{2}-\dfrac{\pi }{4}.\tan \theta \\
& \Rightarrow \dfrac{\pi }{4}.\cot \theta +\dfrac{\pi }{4}.\tan \theta =\dfrac{\pi }{2} \\
& \Rightarrow \dfrac{\pi }{4}\left( \cot \theta +\tan \theta \right)=\dfrac{\pi }{2} \\
\end{align}$
Now we convert $\cot \theta $ to $\tan \theta $ , we get
$\dfrac{\pi }{4}\left( \dfrac{1}{\tan \theta }+\tan \theta \right)=\dfrac{\pi }{2}$
After cancelling $\dfrac{\pi }{4}$ on both the sides, we get
$\begin{align}
& \Rightarrow \dfrac{1}{\tan \theta }+\tan \theta =2 \\
& \Rightarrow \dfrac{1+{{\tan }^{2}}\theta }{\tan \theta }=2 \\
& \Rightarrow 1+{{\tan }^{2}}\theta =2\tan \theta \\
& \Rightarrow {{\tan }^{2}}\theta -2\tan \theta +1=0 \\
\end{align}$
Using the formula of ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$, we can factorize the above quadratic equation as,
$\begin{align}
& \Rightarrow {{\left( \tan \theta -1 \right)}^{2}}=0 \\
& \Rightarrow \tan \theta -1=0 \\
& \Rightarrow \tan \theta =1 \\
& \Rightarrow \tan \theta =\tan \dfrac{\pi }{4} \\
\end{align}$
But we have to find the general solution for $\tan \theta =1$.
Let us consider the formula for finding the general solution.
If $\alpha $ is the principal solution of $\tan \theta =k$, then the general solution of $\tan \theta $ is $n\pi +\alpha $.
Using the above formula we can write the general solution for $\tan \theta =1$ as,
The general solution for $\tan \theta =\tan \dfrac{\pi }{4}$ is $n\pi +\left( \dfrac{\pi }{4} \right)$
Therefore, if $\sin \left( \dfrac{\pi }{4}.\cot \theta \right)=\cos \left( \dfrac{\pi }{4}.\tan \theta \right)$, then $\theta =n\pi +\left( \dfrac{\pi }{4} \right)$
So, the correct answer is “Option C”.
Note: One can make a mistake by considering the general of solution of $\tan \theta =1$ as $n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{4}$ instead of $n\pi +\left( \dfrac{\pi }{4} \right)$. So, one need to be careful while writing the general terms for trigonometric identities. For example, if we consider $n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{4}$ as the general solution for $\tan \theta =1$, then by taking n=1, $n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{4}$ gives us -1, which is not the solution for $\tan \theta =1$. So, one must be careful while writing the general solution for the trigonometric identities.
Complete step by step answer:
We use the formula,
$\cos \theta =\sin \left( \dfrac{\pi }{2}-\theta \right)$
Let us consider the given trigonometric equation
$\sin \left( \dfrac{\pi }{4}.\cot \theta \right)=\cos \left( \dfrac{\pi }{4}.\tan \theta \right)$
Now, we convert cos into sin to equate the angles. So, we get,
$\sin \left( \dfrac{\pi }{4}.\cot \theta \right)=\sin \left( \dfrac{\pi }{2}-\dfrac{\pi }{4}.\tan \theta \right)$
As the trigonometric terms on both sides are equal. By equating both the angles, we get
$\begin{align}
& \Rightarrow \dfrac{\pi }{4}.\cot \theta =\dfrac{\pi }{2}-\dfrac{\pi }{4}.\tan \theta \\
& \Rightarrow \dfrac{\pi }{4}.\cot \theta +\dfrac{\pi }{4}.\tan \theta =\dfrac{\pi }{2} \\
& \Rightarrow \dfrac{\pi }{4}\left( \cot \theta +\tan \theta \right)=\dfrac{\pi }{2} \\
\end{align}$
Now we convert $\cot \theta $ to $\tan \theta $ , we get
$\dfrac{\pi }{4}\left( \dfrac{1}{\tan \theta }+\tan \theta \right)=\dfrac{\pi }{2}$
After cancelling $\dfrac{\pi }{4}$ on both the sides, we get
$\begin{align}
& \Rightarrow \dfrac{1}{\tan \theta }+\tan \theta =2 \\
& \Rightarrow \dfrac{1+{{\tan }^{2}}\theta }{\tan \theta }=2 \\
& \Rightarrow 1+{{\tan }^{2}}\theta =2\tan \theta \\
& \Rightarrow {{\tan }^{2}}\theta -2\tan \theta +1=0 \\
\end{align}$
Using the formula of ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$, we can factorize the above quadratic equation as,
$\begin{align}
& \Rightarrow {{\left( \tan \theta -1 \right)}^{2}}=0 \\
& \Rightarrow \tan \theta -1=0 \\
& \Rightarrow \tan \theta =1 \\
& \Rightarrow \tan \theta =\tan \dfrac{\pi }{4} \\
\end{align}$
But we have to find the general solution for $\tan \theta =1$.
Let us consider the formula for finding the general solution.
If $\alpha $ is the principal solution of $\tan \theta =k$, then the general solution of $\tan \theta $ is $n\pi +\alpha $.
Using the above formula we can write the general solution for $\tan \theta =1$ as,
The general solution for $\tan \theta =\tan \dfrac{\pi }{4}$ is $n\pi +\left( \dfrac{\pi }{4} \right)$
Therefore, if $\sin \left( \dfrac{\pi }{4}.\cot \theta \right)=\cos \left( \dfrac{\pi }{4}.\tan \theta \right)$, then $\theta =n\pi +\left( \dfrac{\pi }{4} \right)$
So, the correct answer is “Option C”.
Note: One can make a mistake by considering the general of solution of $\tan \theta =1$ as $n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{4}$ instead of $n\pi +\left( \dfrac{\pi }{4} \right)$. So, one need to be careful while writing the general terms for trigonometric identities. For example, if we consider $n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{4}$ as the general solution for $\tan \theta =1$, then by taking n=1, $n\pi +{{\left( -1 \right)}^{n}}\dfrac{\pi }{4}$ gives us -1, which is not the solution for $\tan \theta =1$. So, one must be careful while writing the general solution for the trigonometric identities.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

