If a straight line makes angles $\alpha ,\beta \text{,}\gamma $ with the coordinate axes then $\dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\alpha }+\dfrac{1}{\sec 2\beta }-2{{\sin }^{2}}\gamma $ is equal to.
A. -1
B. -2
C. 2
D. 0
Answer
361.2k+ views
Hint: First of all, use the formula ${{\cos }^{2}}\alpha +{{\cos }^{2}}\beta +{{\cos }^{2}}\gamma =1$. Convert ${{\cos }^{2}}\alpha $ in terms of $\cos 2\alpha $ by using the formula $\dfrac{1+\cos 2\alpha }{2}$. Then, convert $\cos 2\alpha $ in terms of ${{\tan }^{2}}\alpha $ by using the formula $\cos 2\alpha =\dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\alpha }$.
Complete step-by-step answer:
We have been given that a straight line makes angles $\alpha ,\beta ,\gamma $ with the coordinate axes.
Here, we have to use general formulas like $1+\cos 2\theta =2{{\cos }^{2}}\theta $,${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$,$\cos 2\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$.
Before proceeding with the question, we must know that the direction cosines of a line are given by $\cos \alpha ,\cos \beta ,\cos \gamma $and the sum of squares of the direction cosines of a line is equal to 1.
$\therefore {{\cos }^{2}}\alpha +{{\cos }^{2}}\beta +{{\cos }^{2}}\gamma =1.....(i)$
We know that ${{\cos }^{2}}\alpha =\dfrac{1+\cos 2\alpha }{2}$ ,${{\cos }^{2}}\beta =\dfrac{1+\cos 2\beta }{2}$ . Therefore, we can substitute this value of ${{\cos }^{2}}\alpha $ and ${{\cos }^{2}}\beta $ in equation (i) as below,
$\Rightarrow \dfrac{1+\cos 2\alpha }{2}+\dfrac{1+\cos 2\beta }{2}+{{\cos }^{2}}\gamma =1.....(ii)$
We know that ${{\cos }^{2}}\gamma +{{\sin }^{2}}\gamma =1$ therefore, we can replace ${{\cos }^{2}}\gamma $as${{\cos }^{2}}\gamma =1-{{\sin }^{2}}\gamma $in equation (ii).
$\Rightarrow \dfrac{1+\cos 2\alpha }{2}+\dfrac{1+\cos 2\beta }{2}+1-{{\sin }^{2}}\gamma =1$
We can take LCM of denominators to perform the basic addition of fractions.
$\Rightarrow \dfrac{1+\cos 2\alpha +1+\cos 2\beta +2-2{{\sin }^{2}}\gamma }{2}=1$
Now, cross multiplying the above equation we get:
$\Rightarrow 1+\cos 2\alpha +1+\cos 2\beta +2-2{{\sin }^{2}}\gamma =2.....(iii)$
We know that $\cos 2\alpha =\dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\alpha }$ . Therefore, we can replace $\cos 2\alpha $ as $\dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\alpha }$ in equation (iii) and we will get,
$\Rightarrow 1+\dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\alpha }+1+\cos 2\beta +2-2{{\sin }^{2}}\gamma =2$
$\Rightarrow \dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\alpha }+4+\cos 2\beta -2{{\sin }^{2}}\gamma =2......(iv)$
We can replace $\cos 2\beta $ with $\dfrac{1}{\sec 2\beta }$ in the equation (iv) and we will get,
$\Rightarrow \dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\beta }+4+\dfrac{1}{\sec 2\beta }-2{{\sin }^{2}}\gamma =2$
$\Rightarrow \dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\alpha }+\dfrac{1}{\sec 2\beta }-2{{\sin }^{2}}\gamma =-2$
$\therefore \dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\beta }+\dfrac{1}{\sec 2\beta }-2{{\sin }^{2}}\gamma =-2$
Therefore, we have found the value of $\dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\alpha }+\dfrac{1}{\sec 2\beta }-2{{\sin }^{2}}\gamma $ as -2
Hence, the answer of the required question is option C.
Note: We have an alternate method for this question. We know that the maximum value of $\tan \alpha =\infty $ , $\sec \beta =\infty $ and ${{\sin }^{2}}\gamma =1$ . Therefore, just putting the maximum values of $\tan \alpha =\infty $,$\sec \beta =\infty $,${{\sin }^{2}}\gamma =1$ in the question, we get
$\begin{align}
& \dfrac{1}{\infty }+\dfrac{1}{\infty }-2 \\
& \\
\end{align}$
Therefore, we get the answer as -2, which is option C.
The whole question is concerned with angles and trigonometric identities. So, you must be able to recall all the formulas of trigonometric identities. If in question you are given any of the angles either $\alpha , \beta ,\gamma $, just check once by putting the values with their respective trigonometric ratios because in some cases we get the denominator as 0. In that case, if you have an option not defined then go for that option.
Complete step-by-step answer:
We have been given that a straight line makes angles $\alpha ,\beta ,\gamma $ with the coordinate axes.
Here, we have to use general formulas like $1+\cos 2\theta =2{{\cos }^{2}}\theta $,${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$,$\cos 2\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$.
Before proceeding with the question, we must know that the direction cosines of a line are given by $\cos \alpha ,\cos \beta ,\cos \gamma $and the sum of squares of the direction cosines of a line is equal to 1.
$\therefore {{\cos }^{2}}\alpha +{{\cos }^{2}}\beta +{{\cos }^{2}}\gamma =1.....(i)$
We know that ${{\cos }^{2}}\alpha =\dfrac{1+\cos 2\alpha }{2}$ ,${{\cos }^{2}}\beta =\dfrac{1+\cos 2\beta }{2}$ . Therefore, we can substitute this value of ${{\cos }^{2}}\alpha $ and ${{\cos }^{2}}\beta $ in equation (i) as below,
$\Rightarrow \dfrac{1+\cos 2\alpha }{2}+\dfrac{1+\cos 2\beta }{2}+{{\cos }^{2}}\gamma =1.....(ii)$
We know that ${{\cos }^{2}}\gamma +{{\sin }^{2}}\gamma =1$ therefore, we can replace ${{\cos }^{2}}\gamma $as${{\cos }^{2}}\gamma =1-{{\sin }^{2}}\gamma $in equation (ii).
$\Rightarrow \dfrac{1+\cos 2\alpha }{2}+\dfrac{1+\cos 2\beta }{2}+1-{{\sin }^{2}}\gamma =1$
We can take LCM of denominators to perform the basic addition of fractions.
$\Rightarrow \dfrac{1+\cos 2\alpha +1+\cos 2\beta +2-2{{\sin }^{2}}\gamma }{2}=1$
Now, cross multiplying the above equation we get:
$\Rightarrow 1+\cos 2\alpha +1+\cos 2\beta +2-2{{\sin }^{2}}\gamma =2.....(iii)$
We know that $\cos 2\alpha =\dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\alpha }$ . Therefore, we can replace $\cos 2\alpha $ as $\dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\alpha }$ in equation (iii) and we will get,
$\Rightarrow 1+\dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\alpha }+1+\cos 2\beta +2-2{{\sin }^{2}}\gamma =2$
$\Rightarrow \dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\alpha }+4+\cos 2\beta -2{{\sin }^{2}}\gamma =2......(iv)$
We can replace $\cos 2\beta $ with $\dfrac{1}{\sec 2\beta }$ in the equation (iv) and we will get,
$\Rightarrow \dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\beta }+4+\dfrac{1}{\sec 2\beta }-2{{\sin }^{2}}\gamma =2$
$\Rightarrow \dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\alpha }+\dfrac{1}{\sec 2\beta }-2{{\sin }^{2}}\gamma =-2$
$\therefore \dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\beta }+\dfrac{1}{\sec 2\beta }-2{{\sin }^{2}}\gamma =-2$
Therefore, we have found the value of $\dfrac{1-{{\tan }^{2}}\alpha }{1+{{\tan }^{2}}\alpha }+\dfrac{1}{\sec 2\beta }-2{{\sin }^{2}}\gamma $ as -2
Hence, the answer of the required question is option C.
Note: We have an alternate method for this question. We know that the maximum value of $\tan \alpha =\infty $ , $\sec \beta =\infty $ and ${{\sin }^{2}}\gamma =1$ . Therefore, just putting the maximum values of $\tan \alpha =\infty $,$\sec \beta =\infty $,${{\sin }^{2}}\gamma =1$ in the question, we get
$\begin{align}
& \dfrac{1}{\infty }+\dfrac{1}{\infty }-2 \\
& \\
\end{align}$
Therefore, we get the answer as -2, which is option C.
The whole question is concerned with angles and trigonometric identities. So, you must be able to recall all the formulas of trigonometric identities. If in question you are given any of the angles either $\alpha , \beta ,\gamma $, just check once by putting the values with their respective trigonometric ratios because in some cases we get the denominator as 0. In that case, if you have an option not defined then go for that option.
Last updated date: 29th Sep 2023
•
Total views: 361.2k
•
Views today: 8.61k
Recently Updated Pages
What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

Difference Between Plant Cell and Animal Cell

What is the basic unit of classification class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

One cusec is equal to how many liters class 8 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers
