
If a rocket is fired with a speed of $v = 2\sqrt {gR} $ near the earth’s surface and coasts upwards, its speed in the interstellar space is.
A. $4\sqrt {gR} $
B. $\sqrt {2gR} $
C. $\sqrt {gR} $
D. $\sqrt {4gR} $
Answer
559.2k+ views
Hint: The gravitational potential energy in the interstellar space is assumed to be zero. But the rocket will have some kinetic energy by virtue of its motion. Also, the energy of the system will be conserved. Use energy conservation and find the required speed.
Complete step by step answer:
Lets understand the energies the rocket will have in both the cases:
First when the rocket is near the Earth’s surface, the rocket will have gravitational potential energy as well as kinetic energy.
In the second case, when the rocket is in the interstellar space. It will only have kinetic energy as the rocket is in motion and moving with certain velocity.
Now, as energy of the system must be conserved. Hence, the energies in first case and second case must be equal. Therefore, we will have:
$\dfrac{1}{2}m{v^2} + ( - \dfrac{{GMm}}{R}) = \dfrac{1}{2}m{v_i}^2 + 0$
It must be noted that the gravitational potential energy is taken as negative, as the body is taken in the opposite direction to that of the gravitational force.
Where $m$ is the mass of the rocket
$v$ is the speed of the rocket when it is fired
$G$ is the universal gravitational constant
$M$ is the mass of the Earth
$R$ is the radius of the Earth
${v_i}$ is the speed of a rocket in interstellar space.
Substituting the value of the initial speed of rocket and solving further we will have:
$\dfrac{1}{2}m{(2\sqrt {gR} )^2} - \dfrac{{GMm}}{R} = \dfrac{1}{2}m{v_i}^2$
$\Rightarrow \dfrac{1}{2}m(4gR) - \dfrac{{(g{R^2})m}}{R} = \dfrac{1}{2}m{v_i}^2$ as $GM = g{R^2}$
$ \therefore {v_i} = \sqrt {2gR} $
So, the correct answer is “Option B”.
Note:
In these types of questions, remember that energy is always conserved. So, try to solve using energy conservation. Do remember that the gravitational potential energy in the interstellar space is taken as zero though practically it is not zero but for calculation it is taken as zero. Also, remember that the gravitational potential energy is taken as negative.
Complete step by step answer:
Lets understand the energies the rocket will have in both the cases:
First when the rocket is near the Earth’s surface, the rocket will have gravitational potential energy as well as kinetic energy.
In the second case, when the rocket is in the interstellar space. It will only have kinetic energy as the rocket is in motion and moving with certain velocity.
Now, as energy of the system must be conserved. Hence, the energies in first case and second case must be equal. Therefore, we will have:
$\dfrac{1}{2}m{v^2} + ( - \dfrac{{GMm}}{R}) = \dfrac{1}{2}m{v_i}^2 + 0$
It must be noted that the gravitational potential energy is taken as negative, as the body is taken in the opposite direction to that of the gravitational force.
Where $m$ is the mass of the rocket
$v$ is the speed of the rocket when it is fired
$G$ is the universal gravitational constant
$M$ is the mass of the Earth
$R$ is the radius of the Earth
${v_i}$ is the speed of a rocket in interstellar space.
Substituting the value of the initial speed of rocket and solving further we will have:
$\dfrac{1}{2}m{(2\sqrt {gR} )^2} - \dfrac{{GMm}}{R} = \dfrac{1}{2}m{v_i}^2$
$\Rightarrow \dfrac{1}{2}m(4gR) - \dfrac{{(g{R^2})m}}{R} = \dfrac{1}{2}m{v_i}^2$ as $GM = g{R^2}$
$ \therefore {v_i} = \sqrt {2gR} $
So, the correct answer is “Option B”.
Note:
In these types of questions, remember that energy is always conserved. So, try to solve using energy conservation. Do remember that the gravitational potential energy in the interstellar space is taken as zero though practically it is not zero but for calculation it is taken as zero. Also, remember that the gravitational potential energy is taken as negative.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

