
If $A = \left[ {\begin{array}{*{20}{c}}
2&1 \\
0&1
\end{array}} \right]$ and $AB = I$ then $B = $
A. $\left[ {\begin{array}{*{20}{c}}
1&2 \\
1&0
\end{array}} \right]$
B. $\left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&0 \\
{ - \dfrac{1}{2}}&1
\end{array}} \right]$
C. $\left[ {\begin{array}{*{20}{c}}
1&{ - \dfrac{1}{2}} \\
0&{\dfrac{1}{2}}
\end{array}} \right]$
D. $\left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&{ - \dfrac{1}{2}} \\
0&1
\end{array}} \right]$
Answer
574.8k+ views
Hint: In this problem, first we will assume the matrix $B$ as an arbitrary $2 \times 2$ matrix. Then, we will multiply the given matrix $A$ with assumed matrix $B$. That is, we will find $AB$. It is given that $AB = I$ where $I$ is $2 \times 2$ identity matrix. We will use this given information and equate the terms of the matrix on both sides. We will get the required matrix $B$.
Complete step-by-step solution:
Let us assume that the required matrix is $B = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]$. Therefore, now we have to find the values of $a,b,c,d$. In this problem, the matrix $A$ is given as $A = \left[ {\begin{array}{*{20}{c}}
2&1 \\
0&1
\end{array}} \right]$. Let us find $AB$ by multiplying the matrix $A$ with matrix $B$. Therefore, we get
$
AB = \left[ {\begin{array}{*{20}{c}}
2&1 \\
0&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right] \\
\Rightarrow AB = \left[ {\begin{array}{*{20}{c}}
{2\left( a \right) + 1\left( c \right)}&{2\left( b \right) + 1\left( d \right)} \\
{0\left( a \right) + 1\left( c \right)}&{0\left( b \right) + 1\left( d \right)}
\end{array}} \right] \\
\Rightarrow AB = \left[ {\begin{array}{*{20}{c}}
{2a + c}&{2b + d} \\
c&d
\end{array}} \right] \cdots \cdots \left( 1 \right) \\
$
In this problem, it is also given that $AB = I \cdots \cdots \left( 2 \right)$ where $I$ is $2 \times 2$ identity matrix. Note that here the matrix $I$ can be written as $I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] \cdots \cdots \left( 3 \right)$. Now from $\left( 1 \right),\left( 2 \right)$ and $\left( 3 \right)$, we can write $
AB = I \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{2a + c}&{2b + d} \\
c&d
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] \cdots \cdots \left( 4 \right) \\
$
Let us compare the elements of both matrices. So, from $\left( 4 \right)$ we can write
$
2a + c = 1 \cdots \cdots \left( 5 \right) \\
2b + d = 0 \cdots \cdots \left( 6 \right) \\
c = 0 \\
d = 1 \\
$
Let us put the value of $c$ in the equation $\left( 5 \right)$. Therefore, we get $2a + 0 = 1 \Rightarrow 2a = 1 \Rightarrow a = \dfrac{1}{2}$
Let us put the value of $d$ in the equation $\left( 6 \right)$. Therefore, we get $2b + 1 = 0 \Rightarrow 2b = - 1 \Rightarrow b = - \dfrac{1}{2}$
Now we will put all these values of $a,b,c,d$ in the assumed matrix $B = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]$. So, we get $B = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&{ - \dfrac{1}{2}} \\
0&1
\end{array}} \right]$. Therefore, we can say that if $A = \left[ {\begin{array}{*{20}{c}}
2&1 \\
0&1
\end{array}} \right]$ and $AB = I$ then $B = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&{ - \dfrac{1}{2}} \\
0&1
\end{array}} \right]$. Hence, option D is correct.
Note: To solve the given problem, we can use the different method. It is given that $AB = I$. Let us pre-multiply ${A^{ - 1}}$ on both sides. So, we get
$
{A^{ - 1}}\left( {AB} \right) = {A^{ - 1}}I \\
\Rightarrow \left( {{A^{ - 1}}A} \right)B = {A^{ - 1}}I \cdots \cdots \left( 1 \right) \\
$
Now we know that ${A^{ - 1}}A = I$ and ${A^{ - 1}}I = {A^{ - 1}}$. Use this information in equation $\left( 1 \right)$, we get
$IB = {A^{ - 1}} \Rightarrow B = {A^{ - 1}}\quad \left[ {\because AI = IA = A} \right]$. Therefore, in this problem to find the matrix $B$, we will find the matrix ${A^{ - 1}}$. The inverse of matrix $A$ is denoted by ${A^{ - 1}}$ and it is obtained by using the formula ${A^{ - 1}} = \dfrac{{adj\left( A \right)}}{{\left| A \right|}}$ where $\left| A \right| \ne 0$.
Complete step-by-step solution:
Let us assume that the required matrix is $B = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]$. Therefore, now we have to find the values of $a,b,c,d$. In this problem, the matrix $A$ is given as $A = \left[ {\begin{array}{*{20}{c}}
2&1 \\
0&1
\end{array}} \right]$. Let us find $AB$ by multiplying the matrix $A$ with matrix $B$. Therefore, we get
$
AB = \left[ {\begin{array}{*{20}{c}}
2&1 \\
0&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right] \\
\Rightarrow AB = \left[ {\begin{array}{*{20}{c}}
{2\left( a \right) + 1\left( c \right)}&{2\left( b \right) + 1\left( d \right)} \\
{0\left( a \right) + 1\left( c \right)}&{0\left( b \right) + 1\left( d \right)}
\end{array}} \right] \\
\Rightarrow AB = \left[ {\begin{array}{*{20}{c}}
{2a + c}&{2b + d} \\
c&d
\end{array}} \right] \cdots \cdots \left( 1 \right) \\
$
In this problem, it is also given that $AB = I \cdots \cdots \left( 2 \right)$ where $I$ is $2 \times 2$ identity matrix. Note that here the matrix $I$ can be written as $I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] \cdots \cdots \left( 3 \right)$. Now from $\left( 1 \right),\left( 2 \right)$ and $\left( 3 \right)$, we can write $
AB = I \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{2a + c}&{2b + d} \\
c&d
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] \cdots \cdots \left( 4 \right) \\
$
Let us compare the elements of both matrices. So, from $\left( 4 \right)$ we can write
$
2a + c = 1 \cdots \cdots \left( 5 \right) \\
2b + d = 0 \cdots \cdots \left( 6 \right) \\
c = 0 \\
d = 1 \\
$
Let us put the value of $c$ in the equation $\left( 5 \right)$. Therefore, we get $2a + 0 = 1 \Rightarrow 2a = 1 \Rightarrow a = \dfrac{1}{2}$
Let us put the value of $d$ in the equation $\left( 6 \right)$. Therefore, we get $2b + 1 = 0 \Rightarrow 2b = - 1 \Rightarrow b = - \dfrac{1}{2}$
Now we will put all these values of $a,b,c,d$ in the assumed matrix $B = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]$. So, we get $B = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&{ - \dfrac{1}{2}} \\
0&1
\end{array}} \right]$. Therefore, we can say that if $A = \left[ {\begin{array}{*{20}{c}}
2&1 \\
0&1
\end{array}} \right]$ and $AB = I$ then $B = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&{ - \dfrac{1}{2}} \\
0&1
\end{array}} \right]$. Hence, option D is correct.
Note: To solve the given problem, we can use the different method. It is given that $AB = I$. Let us pre-multiply ${A^{ - 1}}$ on both sides. So, we get
$
{A^{ - 1}}\left( {AB} \right) = {A^{ - 1}}I \\
\Rightarrow \left( {{A^{ - 1}}A} \right)B = {A^{ - 1}}I \cdots \cdots \left( 1 \right) \\
$
Now we know that ${A^{ - 1}}A = I$ and ${A^{ - 1}}I = {A^{ - 1}}$. Use this information in equation $\left( 1 \right)$, we get
$IB = {A^{ - 1}} \Rightarrow B = {A^{ - 1}}\quad \left[ {\because AI = IA = A} \right]$. Therefore, in this problem to find the matrix $B$, we will find the matrix ${A^{ - 1}}$. The inverse of matrix $A$ is denoted by ${A^{ - 1}}$ and it is obtained by using the formula ${A^{ - 1}} = \dfrac{{adj\left( A \right)}}{{\left| A \right|}}$ where $\left| A \right| \ne 0$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

