If $A = \left\{ {1,2,3} \right\}$ and $B = \left\{ {2,4} \right\}$ , what are $A \times B,B \times A,A \times A,B \times B{\text{ and }}\left( {A \times B} \right) \cap \left( {B \times A} \right)$
Answer
Verified
503.4k+ views
Hint- Use the simple property of product of two sets by the use of basic definition. The product of two sets contains every element of one set related to each and every element of another set.
Complete step-by-step solution -
Given that: $A = \left\{ {1,2,3} \right\}$ and $B = \left\{ {2,4} \right\}$
We have to find out: $A \times B,B \times A,A \times A,B \times B{\text{ and }}\left( {A \times B} \right) \cap \left( {B \times A} \right)$
As we know that for two general sets $X = \left\{ {a,b} \right\}{\text{ and }}Y = \left\{ {p,q} \right\}$ product of the set is:
$X \times Y = \left\{ {\left( {a,p} \right),\left( {a,q} \right),\left( {b,p} \right),\left( {b,q} \right)} \right\}$
So using the above general result proceeding for the given problem we have:
$
A \times B = \left\{ {1,2,3} \right\} \times \left\{ {2,4} \right\} = \left\{ {\left( {1,2} \right),\left( {1,4} \right),\left( {2,2} \right),\left( {2,4} \right),\left( {3,2} \right),\left( {3,4} \right)} \right\} \\
B \times A = \left\{ {2,4} \right\} \times \left\{ {1,2,3} \right\} = \left\{ {\left( {2,1} \right),\left( {2,2} \right),\left( {2,3} \right),\left( {4,1} \right),\left( {4,2} \right),\left( {4,3} \right)} \right\} \\
A \times A = \left\{ {1,2,3} \right\} \times \left\{ {1,2,3} \right\} = \left\{ {\left( {1,1} \right),\left( {1,2} \right),\left( {1,3} \right),\left( {2,1} \right),\left( {2,2} \right),\left( {2,3} \right),\left( {3,1} \right),\left( {3,2} \right),\left( {3,3} \right)} \right\} \\
B \times B = \left\{ {2,4} \right\} \times \left\{ {2,4} \right\} = \left\{ {\left( {2,2} \right),\left( {2,4} \right),\left( {4,2} \right),\left( {4,4} \right)} \right\} \\
$
Now for $\left( {A \times B} \right) \cap \left( {B \times A} \right)$ that is the intersection of two sets, we have already found out $\left( {A \times B} \right){\text{ and }}\left( {B \times A} \right)$ in the above problem just we need to find out the common term between them.
From visualization of $\left( {A \times B} \right){\text{ and }}\left( {B \times A} \right)$ , we have only one common element i.e. $\left( {2,2} \right)$
So,
$\left( {A \times B} \right) \cap \left( {B \times A} \right) = \left\{ {\left( {2,2} \right)} \right\}$
Hence, all the values of the set have been found out.
Note- The Cartesian product of two sets A and B, denoted A × B, is the set of all possible ordered pairs where the elements of A are first and the elements of B are second. The intersection of two sets A and B, denoted by $A \cap B$ , is the set containing all elements of A that also belong to B (or equivalently, all elements of B that also belong to A).
Complete step-by-step solution -
Given that: $A = \left\{ {1,2,3} \right\}$ and $B = \left\{ {2,4} \right\}$
We have to find out: $A \times B,B \times A,A \times A,B \times B{\text{ and }}\left( {A \times B} \right) \cap \left( {B \times A} \right)$
As we know that for two general sets $X = \left\{ {a,b} \right\}{\text{ and }}Y = \left\{ {p,q} \right\}$ product of the set is:
$X \times Y = \left\{ {\left( {a,p} \right),\left( {a,q} \right),\left( {b,p} \right),\left( {b,q} \right)} \right\}$
So using the above general result proceeding for the given problem we have:
$
A \times B = \left\{ {1,2,3} \right\} \times \left\{ {2,4} \right\} = \left\{ {\left( {1,2} \right),\left( {1,4} \right),\left( {2,2} \right),\left( {2,4} \right),\left( {3,2} \right),\left( {3,4} \right)} \right\} \\
B \times A = \left\{ {2,4} \right\} \times \left\{ {1,2,3} \right\} = \left\{ {\left( {2,1} \right),\left( {2,2} \right),\left( {2,3} \right),\left( {4,1} \right),\left( {4,2} \right),\left( {4,3} \right)} \right\} \\
A \times A = \left\{ {1,2,3} \right\} \times \left\{ {1,2,3} \right\} = \left\{ {\left( {1,1} \right),\left( {1,2} \right),\left( {1,3} \right),\left( {2,1} \right),\left( {2,2} \right),\left( {2,3} \right),\left( {3,1} \right),\left( {3,2} \right),\left( {3,3} \right)} \right\} \\
B \times B = \left\{ {2,4} \right\} \times \left\{ {2,4} \right\} = \left\{ {\left( {2,2} \right),\left( {2,4} \right),\left( {4,2} \right),\left( {4,4} \right)} \right\} \\
$
Now for $\left( {A \times B} \right) \cap \left( {B \times A} \right)$ that is the intersection of two sets, we have already found out $\left( {A \times B} \right){\text{ and }}\left( {B \times A} \right)$ in the above problem just we need to find out the common term between them.
From visualization of $\left( {A \times B} \right){\text{ and }}\left( {B \times A} \right)$ , we have only one common element i.e. $\left( {2,2} \right)$
So,
$\left( {A \times B} \right) \cap \left( {B \times A} \right) = \left\{ {\left( {2,2} \right)} \right\}$
Hence, all the values of the set have been found out.
Note- The Cartesian product of two sets A and B, denoted A × B, is the set of all possible ordered pairs where the elements of A are first and the elements of B are second. The intersection of two sets A and B, denoted by $A \cap B$ , is the set containing all elements of A that also belong to B (or equivalently, all elements of B that also belong to A).
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE