Answer

Verified

473.1k+ views

Hint- Use the simple property of product of two sets by the use of basic definition. The product of two sets contains every element of one set related to each and every element of another set.

Complete step-by-step solution -

Given that: $A = \left\{ {1,2,3} \right\}$ and $B = \left\{ {2,4} \right\}$

We have to find out: $A \times B,B \times A,A \times A,B \times B{\text{ and }}\left( {A \times B} \right) \cap \left( {B \times A} \right)$

As we know that for two general sets $X = \left\{ {a,b} \right\}{\text{ and }}Y = \left\{ {p,q} \right\}$ product of the set is:

$X \times Y = \left\{ {\left( {a,p} \right),\left( {a,q} \right),\left( {b,p} \right),\left( {b,q} \right)} \right\}$

So using the above general result proceeding for the given problem we have:

$

A \times B = \left\{ {1,2,3} \right\} \times \left\{ {2,4} \right\} = \left\{ {\left( {1,2} \right),\left( {1,4} \right),\left( {2,2} \right),\left( {2,4} \right),\left( {3,2} \right),\left( {3,4} \right)} \right\} \\

B \times A = \left\{ {2,4} \right\} \times \left\{ {1,2,3} \right\} = \left\{ {\left( {2,1} \right),\left( {2,2} \right),\left( {2,3} \right),\left( {4,1} \right),\left( {4,2} \right),\left( {4,3} \right)} \right\} \\

A \times A = \left\{ {1,2,3} \right\} \times \left\{ {1,2,3} \right\} = \left\{ {\left( {1,1} \right),\left( {1,2} \right),\left( {1,3} \right),\left( {2,1} \right),\left( {2,2} \right),\left( {2,3} \right),\left( {3,1} \right),\left( {3,2} \right),\left( {3,3} \right)} \right\} \\

B \times B = \left\{ {2,4} \right\} \times \left\{ {2,4} \right\} = \left\{ {\left( {2,2} \right),\left( {2,4} \right),\left( {4,2} \right),\left( {4,4} \right)} \right\} \\

$

Now for $\left( {A \times B} \right) \cap \left( {B \times A} \right)$ that is the intersection of two sets, we have already found out $\left( {A \times B} \right){\text{ and }}\left( {B \times A} \right)$ in the above problem just we need to find out the common term between them.

From visualization of $\left( {A \times B} \right){\text{ and }}\left( {B \times A} \right)$ , we have only one common element i.e. $\left( {2,2} \right)$

So,

$\left( {A \times B} \right) \cap \left( {B \times A} \right) = \left\{ {\left( {2,2} \right)} \right\}$

Hence, all the values of the set have been found out.

Note- The Cartesian product of two sets A and B, denoted A × B, is the set of all possible ordered pairs where the elements of A are first and the elements of B are second. The intersection of two sets A and B, denoted by $A \cap B$ , is the set containing all elements of A that also belong to B (or equivalently, all elements of B that also belong to A).

Complete step-by-step solution -

Given that: $A = \left\{ {1,2,3} \right\}$ and $B = \left\{ {2,4} \right\}$

We have to find out: $A \times B,B \times A,A \times A,B \times B{\text{ and }}\left( {A \times B} \right) \cap \left( {B \times A} \right)$

As we know that for two general sets $X = \left\{ {a,b} \right\}{\text{ and }}Y = \left\{ {p,q} \right\}$ product of the set is:

$X \times Y = \left\{ {\left( {a,p} \right),\left( {a,q} \right),\left( {b,p} \right),\left( {b,q} \right)} \right\}$

So using the above general result proceeding for the given problem we have:

$

A \times B = \left\{ {1,2,3} \right\} \times \left\{ {2,4} \right\} = \left\{ {\left( {1,2} \right),\left( {1,4} \right),\left( {2,2} \right),\left( {2,4} \right),\left( {3,2} \right),\left( {3,4} \right)} \right\} \\

B \times A = \left\{ {2,4} \right\} \times \left\{ {1,2,3} \right\} = \left\{ {\left( {2,1} \right),\left( {2,2} \right),\left( {2,3} \right),\left( {4,1} \right),\left( {4,2} \right),\left( {4,3} \right)} \right\} \\

A \times A = \left\{ {1,2,3} \right\} \times \left\{ {1,2,3} \right\} = \left\{ {\left( {1,1} \right),\left( {1,2} \right),\left( {1,3} \right),\left( {2,1} \right),\left( {2,2} \right),\left( {2,3} \right),\left( {3,1} \right),\left( {3,2} \right),\left( {3,3} \right)} \right\} \\

B \times B = \left\{ {2,4} \right\} \times \left\{ {2,4} \right\} = \left\{ {\left( {2,2} \right),\left( {2,4} \right),\left( {4,2} \right),\left( {4,4} \right)} \right\} \\

$

Now for $\left( {A \times B} \right) \cap \left( {B \times A} \right)$ that is the intersection of two sets, we have already found out $\left( {A \times B} \right){\text{ and }}\left( {B \times A} \right)$ in the above problem just we need to find out the common term between them.

From visualization of $\left( {A \times B} \right){\text{ and }}\left( {B \times A} \right)$ , we have only one common element i.e. $\left( {2,2} \right)$

So,

$\left( {A \times B} \right) \cap \left( {B \times A} \right) = \left\{ {\left( {2,2} \right)} \right\}$

Hence, all the values of the set have been found out.

Note- The Cartesian product of two sets A and B, denoted A × B, is the set of all possible ordered pairs where the elements of A are first and the elements of B are second. The intersection of two sets A and B, denoted by $A \cap B$ , is the set containing all elements of A that also belong to B (or equivalently, all elements of B that also belong to A).

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write a letter to the principal requesting him to grant class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE