If a is not a multiple of $\pi $, then show that the function$g\left( x \right)=\csc x$ is differentiable at a and $g'\left( a \right)=-\csc a\cot a$. In general, $g'\left( x \right)=-\csc x\cot x$ for all $x$$\ne $$n\pi $, where $n\in Z$.
Answer
361.5k+ views
Hint: Use the fundamental definition for proving any function to be differentiable or not which is given as. If any function $f\left( x \right)$is differentiable at point ‘$c$’ then LHD and RHD should be equal which are given by relation
Complete step-by-step answer:
LHD $=\underset{\lambda \to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ and RHD $=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$
As we know that any function $f\left( x \right)$is differentiable at any point c, if it’s Left hand derivative (LHD) and Right hand derivative (RHD) are equal to each other and equal to $f'\left( c \right)$ as well.
LHD and RHD of function $f\left( x \right)$ at any point ‘c’ can be given as
LHD $=\underset{\lambda \to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………(i)
RHD $=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………(ii)
Hence, any function $f\left( x \right)$is differentiable at point ‘c’ if
LHD $=$RHD $=f'\left( c \right)$ ……………………………………………………(iii)
Now coming to the question, we have a function$g\left( x \right)=\csc x$ where we need to prove it is differentiable at $x=a$where $a$is not multiple of $\pi $i.e. $a$$\ne $ $n\pi $.
And, we have given in question that $g'\left( x \right)=-\csc x\cot x$, so $g'\left( a \right)=-\csc a\cot a$
For all $x$$\ne $$n\pi $, where $n\in Z$.
So, let us calculate LHD and RHD of $g\left( x \right)=\csc x$ at point a from equation (i) and (ii)
Hence, LHD can be given as
LHD $=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{g\left( x \right)-g\left( a \right)}{x-a}$
Since, $g\left( x \right)=\csc x$, so , $g\left( a \right)=\csc a$
Hence, we get
LHD $=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{\csc x-\csc a}{x-a}$
Now, we can replace ${{a}^{-}}$ by $\left( a-h \right)$ where $h\to 0$, so, we get
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\csc \left( a-h \right)-\csc a}{a-h-a}$
or LHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\csc \left( a-h \right)-\csc a}{-h}$
We know that $\csc x=\dfrac{1}{\sin x}$. Hence, we get
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{1}{\sin \left( a-h \right)}-\dfrac{1}{\sin a} \right]$
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{\sin a-\sin \left( a-h \right)}{\sin \left( a-h \right)\sin a} \right]$
Now, we can use trigonometric identity as
$\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)$
Hence, above equation becomes
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{a-a+h}{2} \right)\cos \left( \dfrac{a+h}{2} \right)}{\sin \left( a-h \right)\sin a} \right]$
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( \dfrac{2a-h}{2} \right)}{\sin \left( a-h \right)\sin a} \right]$
or
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\left( \dfrac{\cos \left( \dfrac{2a-h}{2} \right)}{\sin \left( a-h \right)\sin a} \right)$
Now, we can use relation
$\underset{x\to 0}{\mathop{\lim }}\,\ \dfrac{\sin x}{x}=1$ with $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{h}{2} \right)}{\dfrac{h}{2}}$,
We get after applying limit $h\to 0$
LHD $=-1\dfrac{\cos a}{\sin a\cos a}$
We know that $\dfrac{\cos a}{\sin a}$ $=$$\cot a$and $\dfrac{1}{\sin a}=\csc a$, Hence, we get
LHD $=-\cot a\csc a$ ………………………………………………(iv)
Now we can calculate RHD from equation (ii), we get
RHD $=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{g\left( x \right)-g\left( a \right)}{x-a}$
As we have $g\left( x \right)=\csc x$, so $g\left( a \right)=\csc a$
Hence, we get
RHD $=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{\csc x-\csc a}{x-a}$
Now replace ${{a}^{+}}$ by $a+h$ where $h\to 0$
Hence, we get
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\csc \left( a+h \right)-\csc a}{a+h-a}$
or RHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\csc \left( a+h \right)-\csc a}{h}$
We know that $\csc x=\dfrac{1}{\sin x}$, Hence, we get
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{\left[ \dfrac{1}{\sin \left( a+h \right)}-\dfrac{1}{\sin a} \right]}{h}$
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{\sin a-\sin \left( a+h \right)}{\sin \left( a+h \right)\sin a} \right]$
Now, we can use trigonometric identity as
$\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)$
Hence, RHD can be re-written as
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{a-a-h}{2} \right)\cos \left( \dfrac{a+a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{-h}{2} \right)\cos \left( \dfrac{2a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
or
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\left[ \left( \dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)} \right)\dfrac{\cos \left( \dfrac{2a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
where, we know $\sin \left( -x \right)=-\sin x$
Now, using the relation $\underset{x\to 0}{\mathop{\lim }}\,\ \dfrac{\sin x}{x}=1$, we get after putting limit $h\to 0$ to RHD;
RHD $=-\left[ \left( 1 \right)\dfrac{\cos a}{\sin a\sin a} \right]$
Hence, RHD $=-\cot a\csc a$ …………………………………………(v)
As, it is given that $g\left( x \right)=-\cot x\csc x$ , and hence$g'\left( a \right)=-\cot a\csc a$, Therefore, we get
LHD = RHD =$g'\left( a \right)$
Hence, the given function$g\left( x \right)=\csc x$ is differentiable at $x=a$ from equation (iii) where $a$$\ne $ $n\pi $.
Note: Don’t get confused with the term statement ‘$x$$\ne $ $n\pi $’ or ‘a is not multiple of $\pi $’. It is used because we cannot put $x=n\pi $ in $\csc x$. It will give positive, infinite or negative for $x\to n{{\pi }^{+}}$ or $x\to n{{\pi }^{-}}$. Hence $\csc x$ is not continuous at $x=n\pi $. That’s why we cannot put $x=n\pi $.
One can get confused with the identity $\sin C-\sin D$ , so be clear with the trigonometric identities with these kinds of questions.
One can use the L' Hospital rule for calculating LHD and RHD as LHD and RHD are of the form $\dfrac{0}{0}$. So, we need to use identities; we can use L’ Hospital as well.
Complete step-by-step answer:
LHD $=\underset{\lambda \to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ and RHD $=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$
As we know that any function $f\left( x \right)$is differentiable at any point c, if it’s Left hand derivative (LHD) and Right hand derivative (RHD) are equal to each other and equal to $f'\left( c \right)$ as well.
LHD and RHD of function $f\left( x \right)$ at any point ‘c’ can be given as
LHD $=\underset{\lambda \to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………(i)
RHD $=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………(ii)
Hence, any function $f\left( x \right)$is differentiable at point ‘c’ if
LHD $=$RHD $=f'\left( c \right)$ ……………………………………………………(iii)
Now coming to the question, we have a function$g\left( x \right)=\csc x$ where we need to prove it is differentiable at $x=a$where $a$is not multiple of $\pi $i.e. $a$$\ne $ $n\pi $.
And, we have given in question that $g'\left( x \right)=-\csc x\cot x$, so $g'\left( a \right)=-\csc a\cot a$
For all $x$$\ne $$n\pi $, where $n\in Z$.
So, let us calculate LHD and RHD of $g\left( x \right)=\csc x$ at point a from equation (i) and (ii)
Hence, LHD can be given as
LHD $=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{g\left( x \right)-g\left( a \right)}{x-a}$
Since, $g\left( x \right)=\csc x$, so , $g\left( a \right)=\csc a$
Hence, we get
LHD $=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{\csc x-\csc a}{x-a}$
Now, we can replace ${{a}^{-}}$ by $\left( a-h \right)$ where $h\to 0$, so, we get
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\csc \left( a-h \right)-\csc a}{a-h-a}$
or LHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\csc \left( a-h \right)-\csc a}{-h}$
We know that $\csc x=\dfrac{1}{\sin x}$. Hence, we get
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{1}{\sin \left( a-h \right)}-\dfrac{1}{\sin a} \right]$
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{\sin a-\sin \left( a-h \right)}{\sin \left( a-h \right)\sin a} \right]$
Now, we can use trigonometric identity as
$\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)$
Hence, above equation becomes
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{a-a+h}{2} \right)\cos \left( \dfrac{a+h}{2} \right)}{\sin \left( a-h \right)\sin a} \right]$
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( \dfrac{2a-h}{2} \right)}{\sin \left( a-h \right)\sin a} \right]$
or
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\left( \dfrac{\cos \left( \dfrac{2a-h}{2} \right)}{\sin \left( a-h \right)\sin a} \right)$
Now, we can use relation
$\underset{x\to 0}{\mathop{\lim }}\,\ \dfrac{\sin x}{x}=1$ with $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{h}{2} \right)}{\dfrac{h}{2}}$,
We get after applying limit $h\to 0$
LHD $=-1\dfrac{\cos a}{\sin a\cos a}$
We know that $\dfrac{\cos a}{\sin a}$ $=$$\cot a$and $\dfrac{1}{\sin a}=\csc a$, Hence, we get
LHD $=-\cot a\csc a$ ………………………………………………(iv)
Now we can calculate RHD from equation (ii), we get
RHD $=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{g\left( x \right)-g\left( a \right)}{x-a}$
As we have $g\left( x \right)=\csc x$, so $g\left( a \right)=\csc a$
Hence, we get
RHD $=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{\csc x-\csc a}{x-a}$
Now replace ${{a}^{+}}$ by $a+h$ where $h\to 0$
Hence, we get
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\csc \left( a+h \right)-\csc a}{a+h-a}$
or RHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\csc \left( a+h \right)-\csc a}{h}$
We know that $\csc x=\dfrac{1}{\sin x}$, Hence, we get
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{\left[ \dfrac{1}{\sin \left( a+h \right)}-\dfrac{1}{\sin a} \right]}{h}$
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{\sin a-\sin \left( a+h \right)}{\sin \left( a+h \right)\sin a} \right]$
Now, we can use trigonometric identity as
$\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)$
Hence, RHD can be re-written as
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{a-a-h}{2} \right)\cos \left( \dfrac{a+a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{-h}{2} \right)\cos \left( \dfrac{2a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
or
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\left[ \left( \dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)} \right)\dfrac{\cos \left( \dfrac{2a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
where, we know $\sin \left( -x \right)=-\sin x$
Now, using the relation $\underset{x\to 0}{\mathop{\lim }}\,\ \dfrac{\sin x}{x}=1$, we get after putting limit $h\to 0$ to RHD;
RHD $=-\left[ \left( 1 \right)\dfrac{\cos a}{\sin a\sin a} \right]$
Hence, RHD $=-\cot a\csc a$ …………………………………………(v)
As, it is given that $g\left( x \right)=-\cot x\csc x$ , and hence$g'\left( a \right)=-\cot a\csc a$, Therefore, we get
LHD = RHD =$g'\left( a \right)$
Hence, the given function$g\left( x \right)=\csc x$ is differentiable at $x=a$ from equation (iii) where $a$$\ne $ $n\pi $.
Note: Don’t get confused with the term statement ‘$x$$\ne $ $n\pi $’ or ‘a is not multiple of $\pi $’. It is used because we cannot put $x=n\pi $ in $\csc x$. It will give positive, infinite or negative for $x\to n{{\pi }^{+}}$ or $x\to n{{\pi }^{-}}$. Hence $\csc x$ is not continuous at $x=n\pi $. That’s why we cannot put $x=n\pi $.
One can get confused with the identity $\sin C-\sin D$ , so be clear with the trigonometric identities with these kinds of questions.
One can use the L' Hospital rule for calculating LHD and RHD as LHD and RHD are of the form $\dfrac{0}{0}$. So, we need to use identities; we can use L’ Hospital as well.
Last updated date: 27th Sep 2023
•
Total views: 361.5k
•
Views today: 6.61k
Recently Updated Pages
What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

Difference Between Plant Cell and Animal Cell

What is the basic unit of classification class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

One cusec is equal to how many liters class 8 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers
