Answer
Verified
464.4k+ views
Hint: Use the fundamental definition for proving any function to be differentiable or not which is given as. If any function $f\left( x \right)$is differentiable at point ‘$c$’ then LHD and RHD should be equal which are given by relation
Complete step-by-step answer:
LHD $=\underset{\lambda \to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ and RHD $=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$
As we know that any function $f\left( x \right)$is differentiable at any point c, if it’s Left hand derivative (LHD) and Right hand derivative (RHD) are equal to each other and equal to $f'\left( c \right)$ as well.
LHD and RHD of function $f\left( x \right)$ at any point ‘c’ can be given as
LHD $=\underset{\lambda \to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………(i)
RHD $=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………(ii)
Hence, any function $f\left( x \right)$is differentiable at point ‘c’ if
LHD $=$RHD $=f'\left( c \right)$ ……………………………………………………(iii)
Now coming to the question, we have a function$g\left( x \right)=\csc x$ where we need to prove it is differentiable at $x=a$where $a$is not multiple of $\pi $i.e. $a$$\ne $ $n\pi $.
And, we have given in question that $g'\left( x \right)=-\csc x\cot x$, so $g'\left( a \right)=-\csc a\cot a$
For all $x$$\ne $$n\pi $, where $n\in Z$.
So, let us calculate LHD and RHD of $g\left( x \right)=\csc x$ at point a from equation (i) and (ii)
Hence, LHD can be given as
LHD $=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{g\left( x \right)-g\left( a \right)}{x-a}$
Since, $g\left( x \right)=\csc x$, so , $g\left( a \right)=\csc a$
Hence, we get
LHD $=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{\csc x-\csc a}{x-a}$
Now, we can replace ${{a}^{-}}$ by $\left( a-h \right)$ where $h\to 0$, so, we get
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\csc \left( a-h \right)-\csc a}{a-h-a}$
or LHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\csc \left( a-h \right)-\csc a}{-h}$
We know that $\csc x=\dfrac{1}{\sin x}$. Hence, we get
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{1}{\sin \left( a-h \right)}-\dfrac{1}{\sin a} \right]$
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{\sin a-\sin \left( a-h \right)}{\sin \left( a-h \right)\sin a} \right]$
Now, we can use trigonometric identity as
$\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)$
Hence, above equation becomes
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{a-a+h}{2} \right)\cos \left( \dfrac{a+h}{2} \right)}{\sin \left( a-h \right)\sin a} \right]$
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( \dfrac{2a-h}{2} \right)}{\sin \left( a-h \right)\sin a} \right]$
or
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\left( \dfrac{\cos \left( \dfrac{2a-h}{2} \right)}{\sin \left( a-h \right)\sin a} \right)$
Now, we can use relation
$\underset{x\to 0}{\mathop{\lim }}\,\ \dfrac{\sin x}{x}=1$ with $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{h}{2} \right)}{\dfrac{h}{2}}$,
We get after applying limit $h\to 0$
LHD $=-1\dfrac{\cos a}{\sin a\cos a}$
We know that $\dfrac{\cos a}{\sin a}$ $=$$\cot a$and $\dfrac{1}{\sin a}=\csc a$, Hence, we get
LHD $=-\cot a\csc a$ ………………………………………………(iv)
Now we can calculate RHD from equation (ii), we get
RHD $=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{g\left( x \right)-g\left( a \right)}{x-a}$
As we have $g\left( x \right)=\csc x$, so $g\left( a \right)=\csc a$
Hence, we get
RHD $=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{\csc x-\csc a}{x-a}$
Now replace ${{a}^{+}}$ by $a+h$ where $h\to 0$
Hence, we get
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\csc \left( a+h \right)-\csc a}{a+h-a}$
or RHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\csc \left( a+h \right)-\csc a}{h}$
We know that $\csc x=\dfrac{1}{\sin x}$, Hence, we get
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{\left[ \dfrac{1}{\sin \left( a+h \right)}-\dfrac{1}{\sin a} \right]}{h}$
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{\sin a-\sin \left( a+h \right)}{\sin \left( a+h \right)\sin a} \right]$
Now, we can use trigonometric identity as
$\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)$
Hence, RHD can be re-written as
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{a-a-h}{2} \right)\cos \left( \dfrac{a+a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{-h}{2} \right)\cos \left( \dfrac{2a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
or
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\left[ \left( \dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)} \right)\dfrac{\cos \left( \dfrac{2a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
where, we know $\sin \left( -x \right)=-\sin x$
Now, using the relation $\underset{x\to 0}{\mathop{\lim }}\,\ \dfrac{\sin x}{x}=1$, we get after putting limit $h\to 0$ to RHD;
RHD $=-\left[ \left( 1 \right)\dfrac{\cos a}{\sin a\sin a} \right]$
Hence, RHD $=-\cot a\csc a$ …………………………………………(v)
As, it is given that $g\left( x \right)=-\cot x\csc x$ , and hence$g'\left( a \right)=-\cot a\csc a$, Therefore, we get
LHD = RHD =$g'\left( a \right)$
Hence, the given function$g\left( x \right)=\csc x$ is differentiable at $x=a$ from equation (iii) where $a$$\ne $ $n\pi $.
Note: Don’t get confused with the term statement ‘$x$$\ne $ $n\pi $’ or ‘a is not multiple of $\pi $’. It is used because we cannot put $x=n\pi $ in $\csc x$. It will give positive, infinite or negative for $x\to n{{\pi }^{+}}$ or $x\to n{{\pi }^{-}}$. Hence $\csc x$ is not continuous at $x=n\pi $. That’s why we cannot put $x=n\pi $.
One can get confused with the identity $\sin C-\sin D$ , so be clear with the trigonometric identities with these kinds of questions.
One can use the L' Hospital rule for calculating LHD and RHD as LHD and RHD are of the form $\dfrac{0}{0}$. So, we need to use identities; we can use L’ Hospital as well.
Complete step-by-step answer:
LHD $=\underset{\lambda \to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ and RHD $=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$
As we know that any function $f\left( x \right)$is differentiable at any point c, if it’s Left hand derivative (LHD) and Right hand derivative (RHD) are equal to each other and equal to $f'\left( c \right)$ as well.
LHD and RHD of function $f\left( x \right)$ at any point ‘c’ can be given as
LHD $=\underset{\lambda \to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………(i)
RHD $=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………(ii)
Hence, any function $f\left( x \right)$is differentiable at point ‘c’ if
LHD $=$RHD $=f'\left( c \right)$ ……………………………………………………(iii)
Now coming to the question, we have a function$g\left( x \right)=\csc x$ where we need to prove it is differentiable at $x=a$where $a$is not multiple of $\pi $i.e. $a$$\ne $ $n\pi $.
And, we have given in question that $g'\left( x \right)=-\csc x\cot x$, so $g'\left( a \right)=-\csc a\cot a$
For all $x$$\ne $$n\pi $, where $n\in Z$.
So, let us calculate LHD and RHD of $g\left( x \right)=\csc x$ at point a from equation (i) and (ii)
Hence, LHD can be given as
LHD $=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{g\left( x \right)-g\left( a \right)}{x-a}$
Since, $g\left( x \right)=\csc x$, so , $g\left( a \right)=\csc a$
Hence, we get
LHD $=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{\csc x-\csc a}{x-a}$
Now, we can replace ${{a}^{-}}$ by $\left( a-h \right)$ where $h\to 0$, so, we get
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\csc \left( a-h \right)-\csc a}{a-h-a}$
or LHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\csc \left( a-h \right)-\csc a}{-h}$
We know that $\csc x=\dfrac{1}{\sin x}$. Hence, we get
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{1}{\sin \left( a-h \right)}-\dfrac{1}{\sin a} \right]$
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{\sin a-\sin \left( a-h \right)}{\sin \left( a-h \right)\sin a} \right]$
Now, we can use trigonometric identity as
$\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)$
Hence, above equation becomes
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{a-a+h}{2} \right)\cos \left( \dfrac{a+h}{2} \right)}{\sin \left( a-h \right)\sin a} \right]$
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( \dfrac{2a-h}{2} \right)}{\sin \left( a-h \right)\sin a} \right]$
or
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\left( \dfrac{\cos \left( \dfrac{2a-h}{2} \right)}{\sin \left( a-h \right)\sin a} \right)$
Now, we can use relation
$\underset{x\to 0}{\mathop{\lim }}\,\ \dfrac{\sin x}{x}=1$ with $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{h}{2} \right)}{\dfrac{h}{2}}$,
We get after applying limit $h\to 0$
LHD $=-1\dfrac{\cos a}{\sin a\cos a}$
We know that $\dfrac{\cos a}{\sin a}$ $=$$\cot a$and $\dfrac{1}{\sin a}=\csc a$, Hence, we get
LHD $=-\cot a\csc a$ ………………………………………………(iv)
Now we can calculate RHD from equation (ii), we get
RHD $=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{g\left( x \right)-g\left( a \right)}{x-a}$
As we have $g\left( x \right)=\csc x$, so $g\left( a \right)=\csc a$
Hence, we get
RHD $=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{\csc x-\csc a}{x-a}$
Now replace ${{a}^{+}}$ by $a+h$ where $h\to 0$
Hence, we get
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\csc \left( a+h \right)-\csc a}{a+h-a}$
or RHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\csc \left( a+h \right)-\csc a}{h}$
We know that $\csc x=\dfrac{1}{\sin x}$, Hence, we get
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{\left[ \dfrac{1}{\sin \left( a+h \right)}-\dfrac{1}{\sin a} \right]}{h}$
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{\sin a-\sin \left( a+h \right)}{\sin \left( a+h \right)\sin a} \right]$
Now, we can use trigonometric identity as
$\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)$
Hence, RHD can be re-written as
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{a-a-h}{2} \right)\cos \left( \dfrac{a+a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{-h}{2} \right)\cos \left( \dfrac{2a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
or
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\left[ \left( \dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)} \right)\dfrac{\cos \left( \dfrac{2a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
where, we know $\sin \left( -x \right)=-\sin x$
Now, using the relation $\underset{x\to 0}{\mathop{\lim }}\,\ \dfrac{\sin x}{x}=1$, we get after putting limit $h\to 0$ to RHD;
RHD $=-\left[ \left( 1 \right)\dfrac{\cos a}{\sin a\sin a} \right]$
Hence, RHD $=-\cot a\csc a$ …………………………………………(v)
As, it is given that $g\left( x \right)=-\cot x\csc x$ , and hence$g'\left( a \right)=-\cot a\csc a$, Therefore, we get
LHD = RHD =$g'\left( a \right)$
Hence, the given function$g\left( x \right)=\csc x$ is differentiable at $x=a$ from equation (iii) where $a$$\ne $ $n\pi $.
Note: Don’t get confused with the term statement ‘$x$$\ne $ $n\pi $’ or ‘a is not multiple of $\pi $’. It is used because we cannot put $x=n\pi $ in $\csc x$. It will give positive, infinite or negative for $x\to n{{\pi }^{+}}$ or $x\to n{{\pi }^{-}}$. Hence $\csc x$ is not continuous at $x=n\pi $. That’s why we cannot put $x=n\pi $.
One can get confused with the identity $\sin C-\sin D$ , so be clear with the trigonometric identities with these kinds of questions.
One can use the L' Hospital rule for calculating LHD and RHD as LHD and RHD are of the form $\dfrac{0}{0}$. So, we need to use identities; we can use L’ Hospital as well.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Bimbisara was the founder of dynasty A Nanda B Haryanka class 6 social science CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
10 examples of evaporation in daily life with explanations
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell