If a is not a multiple of $\pi $, then show that the function$g\left( x \right)=\csc x$ is differentiable at a and $g'\left( a \right)=-\csc a\cot a$. In general, $g'\left( x \right)=-\csc x\cot x$ for all $x$$\ne $$n\pi $, where $n\in Z$.
Last updated date: 18th Mar 2023
•
Total views: 304.2k
•
Views today: 2.83k
Answer
304.2k+ views
Hint: Use the fundamental definition for proving any function to be differentiable or not which is given as. If any function $f\left( x \right)$is differentiable at point ‘$c$’ then LHD and RHD should be equal which are given by relation
Complete step-by-step answer:
LHD $=\underset{\lambda \to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ and RHD $=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$
As we know that any function $f\left( x \right)$is differentiable at any point c, if it’s Left hand derivative (LHD) and Right hand derivative (RHD) are equal to each other and equal to $f'\left( c \right)$ as well.
LHD and RHD of function $f\left( x \right)$ at any point ‘c’ can be given as
LHD $=\underset{\lambda \to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………(i)
RHD $=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………(ii)
Hence, any function $f\left( x \right)$is differentiable at point ‘c’ if
LHD $=$RHD $=f'\left( c \right)$ ……………………………………………………(iii)
Now coming to the question, we have a function$g\left( x \right)=\csc x$ where we need to prove it is differentiable at $x=a$where $a$is not multiple of $\pi $i.e. $a$$\ne $ $n\pi $.
And, we have given in question that $g'\left( x \right)=-\csc x\cot x$, so $g'\left( a \right)=-\csc a\cot a$
For all $x$$\ne $$n\pi $, where $n\in Z$.
So, let us calculate LHD and RHD of $g\left( x \right)=\csc x$ at point a from equation (i) and (ii)
Hence, LHD can be given as
LHD $=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{g\left( x \right)-g\left( a \right)}{x-a}$
Since, $g\left( x \right)=\csc x$, so , $g\left( a \right)=\csc a$
Hence, we get
LHD $=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{\csc x-\csc a}{x-a}$
Now, we can replace ${{a}^{-}}$ by $\left( a-h \right)$ where $h\to 0$, so, we get
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\csc \left( a-h \right)-\csc a}{a-h-a}$
or LHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\csc \left( a-h \right)-\csc a}{-h}$
We know that $\csc x=\dfrac{1}{\sin x}$. Hence, we get
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{1}{\sin \left( a-h \right)}-\dfrac{1}{\sin a} \right]$
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{\sin a-\sin \left( a-h \right)}{\sin \left( a-h \right)\sin a} \right]$
Now, we can use trigonometric identity as
$\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)$
Hence, above equation becomes
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{a-a+h}{2} \right)\cos \left( \dfrac{a+h}{2} \right)}{\sin \left( a-h \right)\sin a} \right]$
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( \dfrac{2a-h}{2} \right)}{\sin \left( a-h \right)\sin a} \right]$
or
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\left( \dfrac{\cos \left( \dfrac{2a-h}{2} \right)}{\sin \left( a-h \right)\sin a} \right)$
Now, we can use relation
$\underset{x\to 0}{\mathop{\lim }}\,\ \dfrac{\sin x}{x}=1$ with $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{h}{2} \right)}{\dfrac{h}{2}}$,
We get after applying limit $h\to 0$
LHD $=-1\dfrac{\cos a}{\sin a\cos a}$
We know that $\dfrac{\cos a}{\sin a}$ $=$$\cot a$and $\dfrac{1}{\sin a}=\csc a$, Hence, we get
LHD $=-\cot a\csc a$ ………………………………………………(iv)
Now we can calculate RHD from equation (ii), we get
RHD $=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{g\left( x \right)-g\left( a \right)}{x-a}$
As we have $g\left( x \right)=\csc x$, so $g\left( a \right)=\csc a$
Hence, we get
RHD $=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{\csc x-\csc a}{x-a}$
Now replace ${{a}^{+}}$ by $a+h$ where $h\to 0$
Hence, we get
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\csc \left( a+h \right)-\csc a}{a+h-a}$
or RHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\csc \left( a+h \right)-\csc a}{h}$
We know that $\csc x=\dfrac{1}{\sin x}$, Hence, we get
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{\left[ \dfrac{1}{\sin \left( a+h \right)}-\dfrac{1}{\sin a} \right]}{h}$
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{\sin a-\sin \left( a+h \right)}{\sin \left( a+h \right)\sin a} \right]$
Now, we can use trigonometric identity as
$\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)$
Hence, RHD can be re-written as
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{a-a-h}{2} \right)\cos \left( \dfrac{a+a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{-h}{2} \right)\cos \left( \dfrac{2a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
or
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\left[ \left( \dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)} \right)\dfrac{\cos \left( \dfrac{2a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
where, we know $\sin \left( -x \right)=-\sin x$
Now, using the relation $\underset{x\to 0}{\mathop{\lim }}\,\ \dfrac{\sin x}{x}=1$, we get after putting limit $h\to 0$ to RHD;
RHD $=-\left[ \left( 1 \right)\dfrac{\cos a}{\sin a\sin a} \right]$
Hence, RHD $=-\cot a\csc a$ …………………………………………(v)
As, it is given that $g\left( x \right)=-\cot x\csc x$ , and hence$g'\left( a \right)=-\cot a\csc a$, Therefore, we get
LHD = RHD =$g'\left( a \right)$
Hence, the given function$g\left( x \right)=\csc x$ is differentiable at $x=a$ from equation (iii) where $a$$\ne $ $n\pi $.
Note: Don’t get confused with the term statement ‘$x$$\ne $ $n\pi $’ or ‘a is not multiple of $\pi $’. It is used because we cannot put $x=n\pi $ in $\csc x$. It will give positive, infinite or negative for $x\to n{{\pi }^{+}}$ or $x\to n{{\pi }^{-}}$. Hence $\csc x$ is not continuous at $x=n\pi $. That’s why we cannot put $x=n\pi $.
One can get confused with the identity $\sin C-\sin D$ , so be clear with the trigonometric identities with these kinds of questions.
One can use the L' Hospital rule for calculating LHD and RHD as LHD and RHD are of the form $\dfrac{0}{0}$. So, we need to use identities; we can use L’ Hospital as well.
Complete step-by-step answer:
LHD $=\underset{\lambda \to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ and RHD $=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$
As we know that any function $f\left( x \right)$is differentiable at any point c, if it’s Left hand derivative (LHD) and Right hand derivative (RHD) are equal to each other and equal to $f'\left( c \right)$ as well.
LHD and RHD of function $f\left( x \right)$ at any point ‘c’ can be given as
LHD $=\underset{\lambda \to {{c}^{-}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………(i)
RHD $=\underset{x\to {{c}^{+}}}{\mathop{\lim }}\,\dfrac{f\left( x \right)-f\left( c \right)}{x-c}$ ………………………………………………(ii)
Hence, any function $f\left( x \right)$is differentiable at point ‘c’ if
LHD $=$RHD $=f'\left( c \right)$ ……………………………………………………(iii)
Now coming to the question, we have a function$g\left( x \right)=\csc x$ where we need to prove it is differentiable at $x=a$where $a$is not multiple of $\pi $i.e. $a$$\ne $ $n\pi $.
And, we have given in question that $g'\left( x \right)=-\csc x\cot x$, so $g'\left( a \right)=-\csc a\cot a$
For all $x$$\ne $$n\pi $, where $n\in Z$.
So, let us calculate LHD and RHD of $g\left( x \right)=\csc x$ at point a from equation (i) and (ii)
Hence, LHD can be given as
LHD $=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{g\left( x \right)-g\left( a \right)}{x-a}$
Since, $g\left( x \right)=\csc x$, so , $g\left( a \right)=\csc a$
Hence, we get
LHD $=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\dfrac{\csc x-\csc a}{x-a}$
Now, we can replace ${{a}^{-}}$ by $\left( a-h \right)$ where $h\to 0$, so, we get
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\csc \left( a-h \right)-\csc a}{a-h-a}$
or LHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\csc \left( a-h \right)-\csc a}{-h}$
We know that $\csc x=\dfrac{1}{\sin x}$. Hence, we get
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{1}{\sin \left( a-h \right)}-\dfrac{1}{\sin a} \right]$
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{\sin a-\sin \left( a-h \right)}{\sin \left( a-h \right)\sin a} \right]$
Now, we can use trigonometric identity as
$\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)$
Hence, above equation becomes
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{a-a+h}{2} \right)\cos \left( \dfrac{a+h}{2} \right)}{\sin \left( a-h \right)\sin a} \right]$
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{h}{2} \right)\cos \left( \dfrac{2a-h}{2} \right)}{\sin \left( a-h \right)\sin a} \right]$
or
LHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)}\left( \dfrac{\cos \left( \dfrac{2a-h}{2} \right)}{\sin \left( a-h \right)\sin a} \right)$
Now, we can use relation
$\underset{x\to 0}{\mathop{\lim }}\,\ \dfrac{\sin x}{x}=1$ with $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( \dfrac{h}{2} \right)}{\dfrac{h}{2}}$,
We get after applying limit $h\to 0$
LHD $=-1\dfrac{\cos a}{\sin a\cos a}$
We know that $\dfrac{\cos a}{\sin a}$ $=$$\cot a$and $\dfrac{1}{\sin a}=\csc a$, Hence, we get
LHD $=-\cot a\csc a$ ………………………………………………(iv)
Now we can calculate RHD from equation (ii), we get
RHD $=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{g\left( x \right)-g\left( a \right)}{x-a}$
As we have $g\left( x \right)=\csc x$, so $g\left( a \right)=\csc a$
Hence, we get
RHD $=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\dfrac{\csc x-\csc a}{x-a}$
Now replace ${{a}^{+}}$ by $a+h$ where $h\to 0$
Hence, we get
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\csc \left( a+h \right)-\csc a}{a+h-a}$
or RHD $=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-\csc \left( a+h \right)-\csc a}{h}$
We know that $\csc x=\dfrac{1}{\sin x}$, Hence, we get
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{\left[ \dfrac{1}{\sin \left( a+h \right)}-\dfrac{1}{\sin a} \right]}{h}$
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{\sin a-\sin \left( a+h \right)}{\sin \left( a+h \right)\sin a} \right]$
Now, we can use trigonometric identity as
$\sin C-\sin D=2\sin \left( \dfrac{C-D}{2} \right)\cos \left( \dfrac{C+D}{2} \right)$
Hence, RHD can be re-written as
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{a-a-h}{2} \right)\cos \left( \dfrac{a+a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ \dfrac{1}{h}\left[ \dfrac{2\sin \left( \dfrac{-h}{2} \right)\cos \left( \dfrac{2a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
or
RHD $=\underset{h\to 0}{\mathop{\lim }}\,\ -\left[ \left( \dfrac{\sin \left( \dfrac{h}{2} \right)}{\left( \dfrac{h}{2} \right)} \right)\dfrac{\cos \left( \dfrac{2a+h}{2} \right)}{\sin \left( a+h \right)\sin a} \right]$
where, we know $\sin \left( -x \right)=-\sin x$
Now, using the relation $\underset{x\to 0}{\mathop{\lim }}\,\ \dfrac{\sin x}{x}=1$, we get after putting limit $h\to 0$ to RHD;
RHD $=-\left[ \left( 1 \right)\dfrac{\cos a}{\sin a\sin a} \right]$
Hence, RHD $=-\cot a\csc a$ …………………………………………(v)
As, it is given that $g\left( x \right)=-\cot x\csc x$ , and hence$g'\left( a \right)=-\cot a\csc a$, Therefore, we get
LHD = RHD =$g'\left( a \right)$
Hence, the given function$g\left( x \right)=\csc x$ is differentiable at $x=a$ from equation (iii) where $a$$\ne $ $n\pi $.
Note: Don’t get confused with the term statement ‘$x$$\ne $ $n\pi $’ or ‘a is not multiple of $\pi $’. It is used because we cannot put $x=n\pi $ in $\csc x$. It will give positive, infinite or negative for $x\to n{{\pi }^{+}}$ or $x\to n{{\pi }^{-}}$. Hence $\csc x$ is not continuous at $x=n\pi $. That’s why we cannot put $x=n\pi $.
One can get confused with the identity $\sin C-\sin D$ , so be clear with the trigonometric identities with these kinds of questions.
One can use the L' Hospital rule for calculating LHD and RHD as LHD and RHD are of the form $\dfrac{0}{0}$. So, we need to use identities; we can use L’ Hospital as well.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
