
If A is a square matrix of order 3, then $\left| {{\text{Adj(Adj}}{{\text{A}}^{\text{2}}}{\text{)}}} \right|{\text{ = }}$
A. ${{\text{A}}^{\text{2}}}$
B. ${{\text{A}}^{\text{4}}}$
C. ${{\text{A}}^{\text{8}}}$
D. ${{\text{A}}^{{\text{16}}}}$
Answer
576.9k+ views
Hint: Here we’ll use some properties of determinants and adjoint of square matrices like $\left| {{\text{AdjM}}} \right|{\text{ = }}{\left| {\text{M}} \right|^{{\text{n - 1}}}}$and $\left| {{{\text{M}}^{\text{a}}}} \right|{\text{ = }}{\left| {\text{M}} \right|^{\text{a}}}$, first we’ll find the value of |Adj${{\text{A}}^{\text{2}}}$| then again applying the same property will find the value of$\left| {{\text{Adj(Adj}}{{\text{A}}^{\text{2}}}{\text{)}}} \right|$to get the required answer.
Complete step by step answer:
Given data: A is a square matrix of order 3
As we all know that, if M is a square matrix of order n
Then, $\left| {{\text{AdjM}}} \right|{\text{ = }}{\left| {\text{M}} \right|^{{\text{n - 1}}}}$
Similarly, we can also say that
$\left| {{\text{Adj(AdjM)}}} \right|{\text{ = (}}{\left| {\text{M}} \right|^{{\text{n - 1}}}}{{\text{)}}^{\text{2}}}$
Now, A is a matrix of order 3, so can conclude that
\[
\left| {{\text{Adj(AdjA)}}} \right|{\text{ = (}}{\left| {\text{A}} \right|^{{\text{3 - 1}}}}{{\text{)}}^{\text{2}}} \\
{\text{ = (}}{\left| {\text{A}} \right|^{\text{2}}}{{\text{)}}^{\text{2}}} \\
{\text{ = }}{\left| {\text{A}} \right|^{\text{4}}} \\
\]
Therefore it is applicable for \[{{\text{A}}^{\text{2}}}\] as it will also be a square matrix, concluding that
\[
\left| {{\text{Adj(Adj}}{{\text{A}}^{\text{2}}}{\text{)}}} \right|{\text{ = (}}{\left| {{{\text{A}}^{\text{2}}}} \right|^{{\text{3 - 1}}}}{{\text{)}}^{\text{2}}} \\
{\text{ = (}}{\left| {{{\text{A}}^{\text{2}}}} \right|^{\text{2}}}{{\text{)}}^{\text{2}}} \\
{\text{ = }}{\left| {{{\text{A}}^{\text{2}}}} \right|^{\text{4}}} \\
\]
Since we know that for a square matrix M of order n
$\left| {{{\text{M}}^{\text{a}}}} \right|{\text{ = }}{\left| {\text{M}} \right|^{\text{a}}}$
\[
\left| {{\text{Adj(Adj}}{{\text{A}}^{\text{2}}}{\text{)}}} \right|{\text{ = }}{\left| {{{\text{A}}^{\text{2}}}} \right|^{\text{4}}} \\
{\left| {\text{A}} \right|^{\text{8}}} \\
\]
Therefore, option (C)${{\text{A}}^{\text{8}}}$ is the correct option
Note: An alternative solution for this question can be
Since we know that for a square matrix M of order n
$\left| {{{\text{M}}^{\text{a}}}} \right|{\text{ = }}{\left| {\text{M}} \right|^{\text{a}}}$
Now, since A is also a square matrix
$\left| {{{\text{A}}^{\text{2}}}} \right|{\text{ = }}{\left| {\text{A}} \right|^{\text{2}}}$
Now, applying the same rule as the above solution
\[
\left| {{\text{(Adj}}{{\text{A}}^{\text{2}}}{\text{)}}} \right|{\text{ = }}{\left( {{{\left| {\text{A}} \right|}^{\text{2}}}} \right)^{{\text{3 - 1}}}} \\
{\text{ = }}{\left| {\text{A}} \right|^{\text{4}}} \\
\]
Again using the same formula,
\[
\left| {{\text{Adj(Adj}}{{\text{A}}^{\text{2}}}{\text{)}}} \right|{\text{ = }}{\left( {{{\left| {\text{A}} \right|}^{\text{4}}}} \right)^{{\text{3 - 1}}}} \\
{\text{ = }}{\left| {\text{A}} \right|^{\text{8}}} \\
\]
Complete step by step answer:
Given data: A is a square matrix of order 3
As we all know that, if M is a square matrix of order n
Then, $\left| {{\text{AdjM}}} \right|{\text{ = }}{\left| {\text{M}} \right|^{{\text{n - 1}}}}$
Similarly, we can also say that
$\left| {{\text{Adj(AdjM)}}} \right|{\text{ = (}}{\left| {\text{M}} \right|^{{\text{n - 1}}}}{{\text{)}}^{\text{2}}}$
Now, A is a matrix of order 3, so can conclude that
\[
\left| {{\text{Adj(AdjA)}}} \right|{\text{ = (}}{\left| {\text{A}} \right|^{{\text{3 - 1}}}}{{\text{)}}^{\text{2}}} \\
{\text{ = (}}{\left| {\text{A}} \right|^{\text{2}}}{{\text{)}}^{\text{2}}} \\
{\text{ = }}{\left| {\text{A}} \right|^{\text{4}}} \\
\]
Therefore it is applicable for \[{{\text{A}}^{\text{2}}}\] as it will also be a square matrix, concluding that
\[
\left| {{\text{Adj(Adj}}{{\text{A}}^{\text{2}}}{\text{)}}} \right|{\text{ = (}}{\left| {{{\text{A}}^{\text{2}}}} \right|^{{\text{3 - 1}}}}{{\text{)}}^{\text{2}}} \\
{\text{ = (}}{\left| {{{\text{A}}^{\text{2}}}} \right|^{\text{2}}}{{\text{)}}^{\text{2}}} \\
{\text{ = }}{\left| {{{\text{A}}^{\text{2}}}} \right|^{\text{4}}} \\
\]
Since we know that for a square matrix M of order n
$\left| {{{\text{M}}^{\text{a}}}} \right|{\text{ = }}{\left| {\text{M}} \right|^{\text{a}}}$
\[
\left| {{\text{Adj(Adj}}{{\text{A}}^{\text{2}}}{\text{)}}} \right|{\text{ = }}{\left| {{{\text{A}}^{\text{2}}}} \right|^{\text{4}}} \\
{\left| {\text{A}} \right|^{\text{8}}} \\
\]
Therefore, option (C)${{\text{A}}^{\text{8}}}$ is the correct option
Note: An alternative solution for this question can be
Since we know that for a square matrix M of order n
$\left| {{{\text{M}}^{\text{a}}}} \right|{\text{ = }}{\left| {\text{M}} \right|^{\text{a}}}$
Now, since A is also a square matrix
$\left| {{{\text{A}}^{\text{2}}}} \right|{\text{ = }}{\left| {\text{A}} \right|^{\text{2}}}$
Now, applying the same rule as the above solution
\[
\left| {{\text{(Adj}}{{\text{A}}^{\text{2}}}{\text{)}}} \right|{\text{ = }}{\left( {{{\left| {\text{A}} \right|}^{\text{2}}}} \right)^{{\text{3 - 1}}}} \\
{\text{ = }}{\left| {\text{A}} \right|^{\text{4}}} \\
\]
Again using the same formula,
\[
\left| {{\text{Adj(Adj}}{{\text{A}}^{\text{2}}}{\text{)}}} \right|{\text{ = }}{\left( {{{\left| {\text{A}} \right|}^{\text{4}}}} \right)^{{\text{3 - 1}}}} \\
{\text{ = }}{\left| {\text{A}} \right|^{\text{8}}} \\
\]
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

