
If a function is given by $ f\left( x \right)=\cos \left( \log x \right) $ , then $ f\left( x \right)f\left( y \right)-\dfrac{1}{2}\left( f\left( \dfrac{x}{y} \right)+f\left( xy \right) \right) $ is equal to:
(a) 1
(b) 2
(c) -2
(d) 0
Answer
593.7k+ views
Hint: Start by using the definition of the function and putting the terms in the given expression. Then use the formula $ {{\log }_{a}}x-{{\log }_{a}}y={{\log }_{a}}\dfrac{x}{y} $ and $ {{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy $ to simplify the expression. Finally, use the formula $ \cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) $ and eliminate the removable terms to get the answer.
Complete step-by-step answer:
Let us start the solution to the above question by looking at some of the identities related to logarithmic functions.
$ {{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy $
$ {{\log }_{a}}x-{{\log }_{a}}y={{\log }_{a}}\dfrac{x}{y} $
$ {{\log }_{{{a}^{b}}}}x=\dfrac{1}{b}{{\log }_{a}}x $
$ {{\log }_{a}}{{x}^{b}}=b{{\log }_{a}}x $
Now let us start the simplification of the expression given in the question.
$ f\left( x \right)f\left( y \right)-\dfrac{1}{2}\left( f\left( \dfrac{x}{y} \right)+f\left( xy \right) \right) $
If we use the definition $ f\left( x \right)=\cos \left( \log x \right) $ , we get
$ \cos \left( \log x \right).\cos \left( \log y \right)-\dfrac{1}{2}\left( \cos \left( \log \left( \dfrac{x}{y} \right) \right)+\cos \left( \log \left( xy \right) \right) \right) $
Now we know that $ {{\log }_{a}}x-{{\log }_{a}}y={{\log }_{a}}\dfrac{x}{y} $ and $ {{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy $ . So, if we use this in our expression, we get
$ \cos \left( \log x \right).\cos \left( \log y \right)-\dfrac{1}{2}\left( \cos \left( \log x-\log y \right)+\cos \left( \operatorname{logx}+logy \right) \right) $
Now, we will use the formula $ \cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) $ , such that $ A=\log x-\log y $ and $ B=\log x-\log y $ . On doing so, we get
$ \cos \left( \log x \right).\cos \left( \log y \right)-\dfrac{1}{2}\left( 2\cos \left( \dfrac{\log x-\log y+\log x+\log y}{2} \right)\cos \left( \dfrac{\log x-\log y-\log x-\log y}{2} \right) \right) $ $ =\cos \left( \log x \right).\cos \left( \log y \right)-\dfrac{1}{2}\left( 2\cos \left( \log x \right)\cos \left( -\log y \right) \right) $
Now, we know that cos(-x)=cosx. So, using this in our expression, we get
$ \cos \left( \log x \right).\cos \left( \log y \right)-\cos \left( \log x \right)\cos \left( \log y \right) $
Now, both the terms have the same magnitude but opposite signs, so they are cancelled. So, the final answer comes out to be:
$ \cos \left( \log x \right).\cos \left( \log y \right)-\cos \left( \log x \right)\cos \left( \log y \right)=0 $
So, the correct answer is “Option d”.
Note: The key to the above question is applying the identities related to logarithmic function, if you apply the formulas correctly with correct signs then it is a sure thing that you will reach your answer. Also, don’t miss the half in the expression, because it is a general mistake that students miss the constant factors in the questions involving large numbers of unknown terms.
Complete step-by-step answer:
Let us start the solution to the above question by looking at some of the identities related to logarithmic functions.
$ {{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy $
$ {{\log }_{a}}x-{{\log }_{a}}y={{\log }_{a}}\dfrac{x}{y} $
$ {{\log }_{{{a}^{b}}}}x=\dfrac{1}{b}{{\log }_{a}}x $
$ {{\log }_{a}}{{x}^{b}}=b{{\log }_{a}}x $
Now let us start the simplification of the expression given in the question.
$ f\left( x \right)f\left( y \right)-\dfrac{1}{2}\left( f\left( \dfrac{x}{y} \right)+f\left( xy \right) \right) $
If we use the definition $ f\left( x \right)=\cos \left( \log x \right) $ , we get
$ \cos \left( \log x \right).\cos \left( \log y \right)-\dfrac{1}{2}\left( \cos \left( \log \left( \dfrac{x}{y} \right) \right)+\cos \left( \log \left( xy \right) \right) \right) $
Now we know that $ {{\log }_{a}}x-{{\log }_{a}}y={{\log }_{a}}\dfrac{x}{y} $ and $ {{\log }_{a}}x+{{\log }_{a}}y={{\log }_{a}}xy $ . So, if we use this in our expression, we get
$ \cos \left( \log x \right).\cos \left( \log y \right)-\dfrac{1}{2}\left( \cos \left( \log x-\log y \right)+\cos \left( \operatorname{logx}+logy \right) \right) $
Now, we will use the formula $ \cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) $ , such that $ A=\log x-\log y $ and $ B=\log x-\log y $ . On doing so, we get
$ \cos \left( \log x \right).\cos \left( \log y \right)-\dfrac{1}{2}\left( 2\cos \left( \dfrac{\log x-\log y+\log x+\log y}{2} \right)\cos \left( \dfrac{\log x-\log y-\log x-\log y}{2} \right) \right) $ $ =\cos \left( \log x \right).\cos \left( \log y \right)-\dfrac{1}{2}\left( 2\cos \left( \log x \right)\cos \left( -\log y \right) \right) $
Now, we know that cos(-x)=cosx. So, using this in our expression, we get
$ \cos \left( \log x \right).\cos \left( \log y \right)-\cos \left( \log x \right)\cos \left( \log y \right) $
Now, both the terms have the same magnitude but opposite signs, so they are cancelled. So, the final answer comes out to be:
$ \cos \left( \log x \right).\cos \left( \log y \right)-\cos \left( \log x \right)\cos \left( \log y \right)=0 $
So, the correct answer is “Option d”.
Note: The key to the above question is applying the identities related to logarithmic function, if you apply the formulas correctly with correct signs then it is a sure thing that you will reach your answer. Also, don’t miss the half in the expression, because it is a general mistake that students miss the constant factors in the questions involving large numbers of unknown terms.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

