Answer
Verified
391.2k+ views
Hint: We know that A.M. is arithmetic mean, and G.M. is geometric mean, and A.M and G.M. for two numbers say ‘a’ and ‘b’ will be \[\dfrac{{a + b}}{2}\] and \[\sqrt[{}]{{ab}}\] respectively. We will make a quadratic equation using it, and the roots of the equation gives the value of the numbers which we have to prove.
Complete step-by-step solution:
Given, A and G are A.M and G.M between two numbers. Let the two numbers be ‘a’ and ‘b’, we know that A.M between two numbers is the average of two numbers and G.M between two numbers is the square root of the product of the numbers.
Then, \[A = \dfrac{{a + b}}{2}\] and \[G = \sqrt {ab} \]
Simplifying them, we get:
\[ \Rightarrow a + b = 2A\,\,\,\,\,---------- equation\,1\]
and,
\[ \Rightarrow ab = {G^2}\,\,\,\,\, -------- equation\,2\]
\[\Rightarrow {\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab \\
\Rightarrow {\left( {a - b} \right)^2} = {\left( {2A} \right)^2} - 4{G^2} \\
\Rightarrow {\left( {a - b} \right)^2} = 4\left( {{A^2} - {G^2}} \right) \\
\Rightarrow \left( {a - b} \right) = \pm 2\sqrt {{A^2} - {G^2}} \,\,--- equation\,3\]
Taking equation 1 and equation 2 we get,
\[
\Rightarrow a - b = 2\sqrt {{A^2} - {G^2}} \\
\Rightarrow a + b = 2A \]
Now adding both we get:
\[ \Rightarrow a = A + \sqrt {{A^2} - {G^2}} \]
Putting this value of ‘a’ in equation 1, we get:
\[ \Rightarrow a + b = 2A \\
\Rightarrow A + \sqrt {{A^2} - {G^2}} + b = 2A \]
Calculating the value of ‘b’, we get:
\[ \Rightarrow b = A - \sqrt {{A^2} - {G^2}} \]
This equation can also we written as:
\[ = A - \sqrt {\left( {A + G} \right)\left( {A - G} \right)} \]
Hence, the numbers are \[A \pm \sqrt {{A^2} - {G^2}} \]
Note: We have to be careful while solving quadratic equation questions as there are chances of mistakes with signs while finding the roots. Sometimes the students try to use factorization methods to solve the quadratic equation, but in this type of questions, it is not recommended at all. Always try to use the quadratic formula for solving.
Complete step-by-step solution:
Given, A and G are A.M and G.M between two numbers. Let the two numbers be ‘a’ and ‘b’, we know that A.M between two numbers is the average of two numbers and G.M between two numbers is the square root of the product of the numbers.
Then, \[A = \dfrac{{a + b}}{2}\] and \[G = \sqrt {ab} \]
Simplifying them, we get:
\[ \Rightarrow a + b = 2A\,\,\,\,\,---------- equation\,1\]
and,
\[ \Rightarrow ab = {G^2}\,\,\,\,\, -------- equation\,2\]
\[\Rightarrow {\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab \\
\Rightarrow {\left( {a - b} \right)^2} = {\left( {2A} \right)^2} - 4{G^2} \\
\Rightarrow {\left( {a - b} \right)^2} = 4\left( {{A^2} - {G^2}} \right) \\
\Rightarrow \left( {a - b} \right) = \pm 2\sqrt {{A^2} - {G^2}} \,\,--- equation\,3\]
Taking equation 1 and equation 2 we get,
\[
\Rightarrow a - b = 2\sqrt {{A^2} - {G^2}} \\
\Rightarrow a + b = 2A \]
Now adding both we get:
\[ \Rightarrow a = A + \sqrt {{A^2} - {G^2}} \]
Putting this value of ‘a’ in equation 1, we get:
\[ \Rightarrow a + b = 2A \\
\Rightarrow A + \sqrt {{A^2} - {G^2}} + b = 2A \]
Calculating the value of ‘b’, we get:
\[ \Rightarrow b = A - \sqrt {{A^2} - {G^2}} \]
This equation can also we written as:
\[ = A - \sqrt {\left( {A + G} \right)\left( {A - G} \right)} \]
Hence, the numbers are \[A \pm \sqrt {{A^2} - {G^2}} \]
Note: We have to be careful while solving quadratic equation questions as there are chances of mistakes with signs while finding the roots. Sometimes the students try to use factorization methods to solve the quadratic equation, but in this type of questions, it is not recommended at all. Always try to use the quadratic formula for solving.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE