Answer
Verified
381k+ views
Hint: First we have to define what the terms we need to solve the problem are.
The given question they were asking to find the common roots, solution as follows, since we need to know about Arithmetic progression. An arithmetic progression can be given by $ a,(a + d),(a + 2d),(a + 3d),... $ where $ a $ is the first term and $ d $ is the common difference.
Complete step by step answer:
Since in this question we need prove $ \dfrac{d}{e},\dfrac{e}{b},\dfrac{f}{c} $ are in the common roots of the quadratic terms; $ a{x^2} + 2bx + c = 0 $ and $ d{x^2} + 2ex + f = 0 $ in the arithmetic progression.
Let the question is in the form of quadratic equation take the first equation, $ a{x^2} + 2bx + c = 0 $
In this equation assume that for the quadratic equation general formula $ {b^2} = ac $ or $ b = \sqrt {ac} $ and we will substitute in the equation which we take above we get; $ a{x^2} + 2bx + c = 0 $ $ \Rightarrow a{x^2} + 2\sqrt {ac} x + c = 0 $ (now we are going to take the common terms out which like $ {(a + b)^2} = {a^2} + {b^2} + 2ab $ ) we get; $ a{x^2} + 2\sqrt {ac} x + c = 0 \Rightarrow {(x\sqrt a + \sqrt c )^2} = 0 $ and the square will go to the right side and cancelled we get $ x = - \dfrac{{\sqrt c }}{{\sqrt a }} $ (the equator will term to right side) is the value of x;
Now we have the value of $ x = - \dfrac{{\sqrt c }}{{\sqrt a }} $ and substitute in the second equation $ d{x^2} + 2ex + f = 0 $
Thus $ d(\dfrac{c}{a}) + 2e( - \dfrac{{\sqrt c }}{{\sqrt a }}) + f = 0 $ (now taking the common terms and cross multiplying we get) after further solving into the simplified form we get $ \dfrac{d}{a} + \dfrac{f}{c} = 2e\sqrt {\dfrac{1}{{ac}}} $ (cross multiplied and changes of right left side equation also the common roots taken out)
since $ {b^2} = ac $ thus we get $ \dfrac{d}{a} + \dfrac{f}{c} = \dfrac{{2e}}{b} $ (which is in the addition with respect to A.P)
Thus, the quadratic equations of the first equation $ a{x^2} + 2bx + c = 0 $ and the second equation $ d{x^2} + 2ex + f = 0 $ have a common root provided that $ \dfrac{d}{e},\dfrac{e}{b},\dfrac{f}{c} $ are in A.P.
Note: likewise in G.P the terms are, \[a,(ar),(a{r^2}),(a{r^3}),...\] where $ a $ is the first term and $ r $ is the common ratio.
The quadratic equation can be simplified $ a{x^2} + 2bx + c = 0 $ into $ \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ so that we can able to find the roots of the quadratic equation.
The given question they were asking to find the common roots, solution as follows, since we need to know about Arithmetic progression. An arithmetic progression can be given by $ a,(a + d),(a + 2d),(a + 3d),... $ where $ a $ is the first term and $ d $ is the common difference.
Complete step by step answer:
Since in this question we need prove $ \dfrac{d}{e},\dfrac{e}{b},\dfrac{f}{c} $ are in the common roots of the quadratic terms; $ a{x^2} + 2bx + c = 0 $ and $ d{x^2} + 2ex + f = 0 $ in the arithmetic progression.
Let the question is in the form of quadratic equation take the first equation, $ a{x^2} + 2bx + c = 0 $
In this equation assume that for the quadratic equation general formula $ {b^2} = ac $ or $ b = \sqrt {ac} $ and we will substitute in the equation which we take above we get; $ a{x^2} + 2bx + c = 0 $ $ \Rightarrow a{x^2} + 2\sqrt {ac} x + c = 0 $ (now we are going to take the common terms out which like $ {(a + b)^2} = {a^2} + {b^2} + 2ab $ ) we get; $ a{x^2} + 2\sqrt {ac} x + c = 0 \Rightarrow {(x\sqrt a + \sqrt c )^2} = 0 $ and the square will go to the right side and cancelled we get $ x = - \dfrac{{\sqrt c }}{{\sqrt a }} $ (the equator will term to right side) is the value of x;
Now we have the value of $ x = - \dfrac{{\sqrt c }}{{\sqrt a }} $ and substitute in the second equation $ d{x^2} + 2ex + f = 0 $
Thus $ d(\dfrac{c}{a}) + 2e( - \dfrac{{\sqrt c }}{{\sqrt a }}) + f = 0 $ (now taking the common terms and cross multiplying we get) after further solving into the simplified form we get $ \dfrac{d}{a} + \dfrac{f}{c} = 2e\sqrt {\dfrac{1}{{ac}}} $ (cross multiplied and changes of right left side equation also the common roots taken out)
since $ {b^2} = ac $ thus we get $ \dfrac{d}{a} + \dfrac{f}{c} = \dfrac{{2e}}{b} $ (which is in the addition with respect to A.P)
Thus, the quadratic equations of the first equation $ a{x^2} + 2bx + c = 0 $ and the second equation $ d{x^2} + 2ex + f = 0 $ have a common root provided that $ \dfrac{d}{e},\dfrac{e}{b},\dfrac{f}{c} $ are in A.P.
Note: likewise in G.P the terms are, \[a,(ar),(a{r^2}),(a{r^3}),...\] where $ a $ is the first term and $ r $ is the common ratio.
The quadratic equation can be simplified $ a{x^2} + 2bx + c = 0 $ into $ \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ so that we can able to find the roots of the quadratic equation.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
What percentage of the solar systems mass is found class 8 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference Between Plant Cell and Animal Cell
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE