
If a, b, c is in G.P, show that equation $ a{x^2} + 2bx + c = 0 $ and $ d{x^2} + 2ex + f = 0 $ have a common root provided that $ \dfrac{d}{e},\dfrac{e}{b},\dfrac{f}{c} $ are in A.P.
Answer
410.4k+ views
Hint: First we have to define what the terms we need to solve the problem are.
The given question they were asking to find the common roots, solution as follows, since we need to know about Arithmetic progression. An arithmetic progression can be given by $ a,(a + d),(a + 2d),(a + 3d),... $ where $ a $ is the first term and $ d $ is the common difference.
Complete step by step answer:
Since in this question we need prove $ \dfrac{d}{e},\dfrac{e}{b},\dfrac{f}{c} $ are in the common roots of the quadratic terms; $ a{x^2} + 2bx + c = 0 $ and $ d{x^2} + 2ex + f = 0 $ in the arithmetic progression.
Let the question is in the form of quadratic equation take the first equation, $ a{x^2} + 2bx + c = 0 $
In this equation assume that for the quadratic equation general formula $ {b^2} = ac $ or $ b = \sqrt {ac} $ and we will substitute in the equation which we take above we get; $ a{x^2} + 2bx + c = 0 $ $ \Rightarrow a{x^2} + 2\sqrt {ac} x + c = 0 $ (now we are going to take the common terms out which like $ {(a + b)^2} = {a^2} + {b^2} + 2ab $ ) we get; $ a{x^2} + 2\sqrt {ac} x + c = 0 \Rightarrow {(x\sqrt a + \sqrt c )^2} = 0 $ and the square will go to the right side and cancelled we get $ x = - \dfrac{{\sqrt c }}{{\sqrt a }} $ (the equator will term to right side) is the value of x;
Now we have the value of $ x = - \dfrac{{\sqrt c }}{{\sqrt a }} $ and substitute in the second equation $ d{x^2} + 2ex + f = 0 $
Thus $ d(\dfrac{c}{a}) + 2e( - \dfrac{{\sqrt c }}{{\sqrt a }}) + f = 0 $ (now taking the common terms and cross multiplying we get) after further solving into the simplified form we get $ \dfrac{d}{a} + \dfrac{f}{c} = 2e\sqrt {\dfrac{1}{{ac}}} $ (cross multiplied and changes of right left side equation also the common roots taken out)
since $ {b^2} = ac $ thus we get $ \dfrac{d}{a} + \dfrac{f}{c} = \dfrac{{2e}}{b} $ (which is in the addition with respect to A.P)
Thus, the quadratic equations of the first equation $ a{x^2} + 2bx + c = 0 $ and the second equation $ d{x^2} + 2ex + f = 0 $ have a common root provided that $ \dfrac{d}{e},\dfrac{e}{b},\dfrac{f}{c} $ are in A.P.
Note: likewise in G.P the terms are, \[a,(ar),(a{r^2}),(a{r^3}),...\] where $ a $ is the first term and $ r $ is the common ratio.
The quadratic equation can be simplified $ a{x^2} + 2bx + c = 0 $ into $ \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ so that we can able to find the roots of the quadratic equation.
The given question they were asking to find the common roots, solution as follows, since we need to know about Arithmetic progression. An arithmetic progression can be given by $ a,(a + d),(a + 2d),(a + 3d),... $ where $ a $ is the first term and $ d $ is the common difference.
Complete step by step answer:
Since in this question we need prove $ \dfrac{d}{e},\dfrac{e}{b},\dfrac{f}{c} $ are in the common roots of the quadratic terms; $ a{x^2} + 2bx + c = 0 $ and $ d{x^2} + 2ex + f = 0 $ in the arithmetic progression.
Let the question is in the form of quadratic equation take the first equation, $ a{x^2} + 2bx + c = 0 $
In this equation assume that for the quadratic equation general formula $ {b^2} = ac $ or $ b = \sqrt {ac} $ and we will substitute in the equation which we take above we get; $ a{x^2} + 2bx + c = 0 $ $ \Rightarrow a{x^2} + 2\sqrt {ac} x + c = 0 $ (now we are going to take the common terms out which like $ {(a + b)^2} = {a^2} + {b^2} + 2ab $ ) we get; $ a{x^2} + 2\sqrt {ac} x + c = 0 \Rightarrow {(x\sqrt a + \sqrt c )^2} = 0 $ and the square will go to the right side and cancelled we get $ x = - \dfrac{{\sqrt c }}{{\sqrt a }} $ (the equator will term to right side) is the value of x;
Now we have the value of $ x = - \dfrac{{\sqrt c }}{{\sqrt a }} $ and substitute in the second equation $ d{x^2} + 2ex + f = 0 $
Thus $ d(\dfrac{c}{a}) + 2e( - \dfrac{{\sqrt c }}{{\sqrt a }}) + f = 0 $ (now taking the common terms and cross multiplying we get) after further solving into the simplified form we get $ \dfrac{d}{a} + \dfrac{f}{c} = 2e\sqrt {\dfrac{1}{{ac}}} $ (cross multiplied and changes of right left side equation also the common roots taken out)
since $ {b^2} = ac $ thus we get $ \dfrac{d}{a} + \dfrac{f}{c} = \dfrac{{2e}}{b} $ (which is in the addition with respect to A.P)
Thus, the quadratic equations of the first equation $ a{x^2} + 2bx + c = 0 $ and the second equation $ d{x^2} + 2ex + f = 0 $ have a common root provided that $ \dfrac{d}{e},\dfrac{e}{b},\dfrac{f}{c} $ are in A.P.
Note: likewise in G.P the terms are, \[a,(ar),(a{r^2}),(a{r^3}),...\] where $ a $ is the first term and $ r $ is the common ratio.
The quadratic equation can be simplified $ a{x^2} + 2bx + c = 0 $ into $ \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} $ so that we can able to find the roots of the quadratic equation.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

The combining capacity of an element is known as i class 11 chemistry CBSE
