If a, b, c is in AP a, mb, c is in GP then a, ${{m}^{2}}b$, c is in?
Answer
281.4k+ views
Hint: In the given question we are given some terms of arithmetic progression and some terms of geometric progression and some more terms are also given which we need to identify what kind of series it belongs to or is any kind of progression for which we need to clearly use the definition of each terms.
Complete step by step answer:
According to the question, we are given that a, b, c is in AP and we know that in any arithmetic progression the common difference between the consecutive terms is the same. Therefore, we can write as
$\begin{align}
& b-a=c-b \\
& \Rightarrow 2b=c-a \\
& \Rightarrow b=\dfrac{c-a}{2} \\
\end{align}$
Now, similarly we know that in GP the common ratio between the consecutive terms is same therefore, we get,
$\begin{align}
& \dfrac{mb}{a}=\dfrac{c}{mb} \\
& \Rightarrow {{m}^{2}}{{b}^{2}}=ac \\
\end{align}$
Now, making some substitutions in this we get,
$\begin{align}
& {{m}^{2}}bb=ac \\
& \Rightarrow {{m}^{2}}b\left( \dfrac{c-a}{2} \right)=ac \\
& \Rightarrow {{m}^{2}}b=\dfrac{2ac}{c-a} \\
\end{align}$
And this clearly shows the given three terms are in HP as they satisfy the relation of harmonic series.
Therefore, a, ${{m}^{2}}b$, c is in HP.
Note: In such a type of question, we need to be careful with the definition of each type of progression or series involved. Also, we need to be aware of all the main terms involved and proceed directly as asked by the definition and always try to write the simplified answer and work step wise step in order to reduce chances of mistakes.
Complete step by step answer:
According to the question, we are given that a, b, c is in AP and we know that in any arithmetic progression the common difference between the consecutive terms is the same. Therefore, we can write as
$\begin{align}
& b-a=c-b \\
& \Rightarrow 2b=c-a \\
& \Rightarrow b=\dfrac{c-a}{2} \\
\end{align}$
Now, similarly we know that in GP the common ratio between the consecutive terms is same therefore, we get,
$\begin{align}
& \dfrac{mb}{a}=\dfrac{c}{mb} \\
& \Rightarrow {{m}^{2}}{{b}^{2}}=ac \\
\end{align}$
Now, making some substitutions in this we get,
$\begin{align}
& {{m}^{2}}bb=ac \\
& \Rightarrow {{m}^{2}}b\left( \dfrac{c-a}{2} \right)=ac \\
& \Rightarrow {{m}^{2}}b=\dfrac{2ac}{c-a} \\
\end{align}$
And this clearly shows the given three terms are in HP as they satisfy the relation of harmonic series.
Therefore, a, ${{m}^{2}}b$, c is in HP.
Note: In such a type of question, we need to be careful with the definition of each type of progression or series involved. Also, we need to be aware of all the main terms involved and proceed directly as asked by the definition and always try to write the simplified answer and work step wise step in order to reduce chances of mistakes.
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which one of the following places is unlikely to be class 8 physics CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Elucidate the structure of fructose class 12 chemistry CBSE

What is pollution? How many types of pollution? Define it
