Answer
Verified
491.4k+ views
Hint: Make the fraction \[\dfrac{a}{b}\text{ and }\dfrac{c}{d}\] minimum by taking 2 smallest and 2 largest numbers from the set. We have to select a,b,c and d in such a format that numerator terms like a and c should be smaller and denominator terms like b and d should be bigger to find the minimum value.
Complete step-by-step answer:
We are given the set of numbers {1, 2, 3, ….., 9}. If a, b, c, d are four distinct numbers chosen from this set, then we have to find the minimum value of
\[L=\dfrac{a}{b}+\dfrac{c}{d}\]
To find the minimum value of \[\dfrac{a}{b}+\dfrac{c}{d}\], we have to choose 4 numbers such that \[\left( \dfrac{a}{b} \right)\text{ and }\left( \dfrac{c}{d} \right)\] have minimum values individually and hence \[\dfrac{a}{b}+\dfrac{c}{d}\] would also have minimum value.
Now, we know that if we take any fraction say, \[\dfrac{N}{D}\] where N is numerator and D is denominator and want to make it minimum, then we have to select the smallest possible number as N and biggest possible number as D.
Hence, to get minimum values of fractions \[\dfrac{a}{b}\text{ and }\dfrac{c}{d}\], we will select two largest numbers from the set {1, 2, 3…..9} and two smallest numbers from set {1, 2, 3…..9}
So, the two largest numbers are 8 and 9 and two smallest numbers are 1 and 2 from the set.
Since, we know that for \[\left( \dfrac{a}{b} \right)\text{ and }\left( \dfrac{c}{d} \right)\] to be minimum, a and c must be taken as numbers 1 and 2, while b and d must be taken as 8 and 9.
Now, let us put a = 1 and c = 2. Therefore, we get
\[L=\dfrac{a}{b}+\dfrac{c}{d}=\dfrac{1}{b}+\dfrac{2}{d}\]
Now if b = 9 and d = 8, we get,
\[\begin{align}
& L=\dfrac{1}{9}+\dfrac{2}{8} \\
& =\dfrac{8+18}{72} \\
& =\dfrac{26}{72} \\
& =\dfrac{13}{36} \\
& =0.36111 \\
\end{align}\]
Therefore, we get L = 0.36111 (Approx)
Now, if b= 8 and d = 9. We get,
\[L=\dfrac{1}{8}+\dfrac{2}{9}\]
\[\begin{align}
& =\dfrac{9+16}{72} \\
& =\dfrac{25}{72} \\
& =0.34722 \\
\end{align}\]
Therefore, in this case we get L = 0.34722 (Approx)
As we can see that,
\[0.36111>0.34722\]
Or, \[\dfrac{13}{36}>\dfrac{25}{72}\]
Therefore we get minimum values of \[\dfrac{a}{b}+\dfrac{c}{d}\] as \[\dfrac{25}{72}\].
Hence, option (d) is correct.
Note: Here, some students take \[\dfrac{a}{b}\text{ as }\dfrac{1}{9}\] and \[\dfrac{c}{d}\text{ as }\dfrac{2}{8}\] and get the wrong answer \[\dfrac{13}{36}\] which is option (c). But they must keep in mind that we not only have to make \[\dfrac{a}{b}\text{ and }\dfrac{c}{d}\] minimum but we also need to make \[\left( \dfrac{a}{b}+\dfrac{c}{d} \right)\] minimum. Therefore, we take \[\dfrac{a}{b}=\dfrac{2}{9}\text{ and }\dfrac{c}{d}=\dfrac{1}{8}\] which makes \[\dfrac{a}{b}+\dfrac{c}{d}\] minimum.
Complete step-by-step answer:
We are given the set of numbers {1, 2, 3, ….., 9}. If a, b, c, d are four distinct numbers chosen from this set, then we have to find the minimum value of
\[L=\dfrac{a}{b}+\dfrac{c}{d}\]
To find the minimum value of \[\dfrac{a}{b}+\dfrac{c}{d}\], we have to choose 4 numbers such that \[\left( \dfrac{a}{b} \right)\text{ and }\left( \dfrac{c}{d} \right)\] have minimum values individually and hence \[\dfrac{a}{b}+\dfrac{c}{d}\] would also have minimum value.
Now, we know that if we take any fraction say, \[\dfrac{N}{D}\] where N is numerator and D is denominator and want to make it minimum, then we have to select the smallest possible number as N and biggest possible number as D.
Hence, to get minimum values of fractions \[\dfrac{a}{b}\text{ and }\dfrac{c}{d}\], we will select two largest numbers from the set {1, 2, 3…..9} and two smallest numbers from set {1, 2, 3…..9}
So, the two largest numbers are 8 and 9 and two smallest numbers are 1 and 2 from the set.
Since, we know that for \[\left( \dfrac{a}{b} \right)\text{ and }\left( \dfrac{c}{d} \right)\] to be minimum, a and c must be taken as numbers 1 and 2, while b and d must be taken as 8 and 9.
Now, let us put a = 1 and c = 2. Therefore, we get
\[L=\dfrac{a}{b}+\dfrac{c}{d}=\dfrac{1}{b}+\dfrac{2}{d}\]
Now if b = 9 and d = 8, we get,
\[\begin{align}
& L=\dfrac{1}{9}+\dfrac{2}{8} \\
& =\dfrac{8+18}{72} \\
& =\dfrac{26}{72} \\
& =\dfrac{13}{36} \\
& =0.36111 \\
\end{align}\]
Therefore, we get L = 0.36111 (Approx)
Now, if b= 8 and d = 9. We get,
\[L=\dfrac{1}{8}+\dfrac{2}{9}\]
\[\begin{align}
& =\dfrac{9+16}{72} \\
& =\dfrac{25}{72} \\
& =0.34722 \\
\end{align}\]
Therefore, in this case we get L = 0.34722 (Approx)
As we can see that,
\[0.36111>0.34722\]
Or, \[\dfrac{13}{36}>\dfrac{25}{72}\]
Therefore we get minimum values of \[\dfrac{a}{b}+\dfrac{c}{d}\] as \[\dfrac{25}{72}\].
Hence, option (d) is correct.
Note: Here, some students take \[\dfrac{a}{b}\text{ as }\dfrac{1}{9}\] and \[\dfrac{c}{d}\text{ as }\dfrac{2}{8}\] and get the wrong answer \[\dfrac{13}{36}\] which is option (c). But they must keep in mind that we not only have to make \[\dfrac{a}{b}\text{ and }\dfrac{c}{d}\] minimum but we also need to make \[\left( \dfrac{a}{b}+\dfrac{c}{d} \right)\] minimum. Therefore, we take \[\dfrac{a}{b}=\dfrac{2}{9}\text{ and }\dfrac{c}{d}=\dfrac{1}{8}\] which makes \[\dfrac{a}{b}+\dfrac{c}{d}\] minimum.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths