If a, b, c are in H.P., then which one of the following is true?
(A) $\dfrac{1}{\text{b}-\text{a}}+\dfrac{1}{\text{b}-\text{c}}=\dfrac{1}{\text{b}}$
(B) $\dfrac{\text{ac}}{\text{a}+\text{c}}=\text{b}$
(C) $\dfrac{\text{b}+\text{a}}{\text{b}-\text{a}}+\dfrac{\text{b}+\text{c}}{\text{b}-\text{c}}=1$
(D) None of these.
Answer
Verified
480.3k+ views
Hint: Here, we know that, H.P is the opposite of A.P. then,
a, b, c are in H.P,
$\dfrac{2}{\text{b}}=\dfrac{1}{\text{a}}+\dfrac{1}{\text{c}}\Rightarrow \dfrac{2\,\text{ac}}{\text{a}+\text{c}}$ and check all option which will be true.
Complete step by step solution: Given,
a, b, c are in H.P.
⇒ $\dfrac{1}{\text{b}}-\dfrac{1}{\text{a}}=\dfrac{1}{\text{c}}-\dfrac{1}{\text{b}}$
⇒ $\dfrac{1}{\text{b}}+\dfrac{1}{\text{b}}=\dfrac{1}{\text{a}}+\dfrac{1}{\text{c}}$
⇒ After addition, we get
⇒ $\dfrac{2}{\text{b}}=\dfrac{\text{a}+\text{c}}{\text{ac}}$
After cross-multiplication, we get,
⇒ $\dfrac{\text{b}}{2}=\dfrac{\text{ac}}{\text{a}+\text{c}}$
⇒ $\text{b}=\dfrac{\text{2 ac}}{\text{a}+\text{c}}$
Now, option (1)
⇒ $\dfrac{1}{\text{b}-\text{a}}+\dfrac{1}{\text{b}-\text{c}}=\dfrac{1}{\text{b}}$
⇒ After adding, we get
⇒ $\dfrac{\text{b}-\text{c}+\text{b}-\text{a}}{\text{(b}-\text{c)(b}-\text{a)}}=\dfrac{1}{\text{b}}$
\[\Rightarrow (2\text{b}-\text{a}-\text{c})\,\text{b}={{\text{b}}^{\text{2}}}\,-\,\text{ab}\,-\,\text{cb}\,+\,\text{ac}\]
\[\Rightarrow 2{{\text{b}}^{2}}-\text{ab}-\text{bc}={{\text{b}}^{\text{2}}}-\text{ab}-{{\text{b}}^{2}}\text{c}+\text{ac}\]
\[\Rightarrow {{\text{b}}^{2}}=\text{ac}\]
That is wrong.
Now, option (2)
$\Rightarrow \dfrac{\text{ac}}{\text{a}+\text{c}}=\text{b}$
That is wrong,
Now, option (3).
$\Rightarrow \dfrac{\text{b}+\text{a}}{\text{b}-\text{a}}+\dfrac{\text{b}+\text{c}}{\text{b}-\text{c}}=1$.
⇒ After cross-multiplication, we get,
\[\Rightarrow (\text{b}+\text{a})(\text{b}-\text{c})+(\text{b}+\text{c})(\text{b}-\text{a})=(\text{b}-\text{a})(\text{b}-\text{c})\]
Now, multiplying
\[\Rightarrow {{\text{b}}^{\text{2}}}-\text{bc}+\text{ab}-\text{ac}+{{\text{b}}^{\text{2}}}-\text{ab}+\text{bc}-\text{ac}={{\text{b}}^{\text{2}}}-\text{ab}-\text{bc}+\text{ac}\]
\[\Rightarrow {{\text{b}}^{\text{2}}}-2\text{ac}=-\text{ab}-\text{bc}+\text{ac}\]
\[\Rightarrow {{\text{b}}^{\text{2}}}=\dfrac{-\text{ab}-\text{bc}+\text{ac}}{2\text{ac}}\]
That is False.
Hence, the correct answer is none of the above.
Note: The above question is of arithmetic progression in which A sequence of numbers is called an arithmetic progression if the difference between any two consecutive terms is always same and the h.p is a harmonic progression is a progression formed by taking the reciprocals of an arithmetic progression.
Here, H.P = $\dfrac{1}{\text{b}}-\dfrac{1}{\text{a}}=\dfrac{1}{\text{c}}-\dfrac{1}{\text{b}}$
,where, a,b.c and d is the number of a series.then, check all option.
a, b, c are in H.P,
$\dfrac{2}{\text{b}}=\dfrac{1}{\text{a}}+\dfrac{1}{\text{c}}\Rightarrow \dfrac{2\,\text{ac}}{\text{a}+\text{c}}$ and check all option which will be true.
Complete step by step solution: Given,
a, b, c are in H.P.
⇒ $\dfrac{1}{\text{b}}-\dfrac{1}{\text{a}}=\dfrac{1}{\text{c}}-\dfrac{1}{\text{b}}$
⇒ $\dfrac{1}{\text{b}}+\dfrac{1}{\text{b}}=\dfrac{1}{\text{a}}+\dfrac{1}{\text{c}}$
⇒ After addition, we get
⇒ $\dfrac{2}{\text{b}}=\dfrac{\text{a}+\text{c}}{\text{ac}}$
After cross-multiplication, we get,
⇒ $\dfrac{\text{b}}{2}=\dfrac{\text{ac}}{\text{a}+\text{c}}$
⇒ $\text{b}=\dfrac{\text{2 ac}}{\text{a}+\text{c}}$
Now, option (1)
⇒ $\dfrac{1}{\text{b}-\text{a}}+\dfrac{1}{\text{b}-\text{c}}=\dfrac{1}{\text{b}}$
⇒ After adding, we get
⇒ $\dfrac{\text{b}-\text{c}+\text{b}-\text{a}}{\text{(b}-\text{c)(b}-\text{a)}}=\dfrac{1}{\text{b}}$
\[\Rightarrow (2\text{b}-\text{a}-\text{c})\,\text{b}={{\text{b}}^{\text{2}}}\,-\,\text{ab}\,-\,\text{cb}\,+\,\text{ac}\]
\[\Rightarrow 2{{\text{b}}^{2}}-\text{ab}-\text{bc}={{\text{b}}^{\text{2}}}-\text{ab}-{{\text{b}}^{2}}\text{c}+\text{ac}\]
\[\Rightarrow {{\text{b}}^{2}}=\text{ac}\]
That is wrong.
Now, option (2)
$\Rightarrow \dfrac{\text{ac}}{\text{a}+\text{c}}=\text{b}$
That is wrong,
Now, option (3).
$\Rightarrow \dfrac{\text{b}+\text{a}}{\text{b}-\text{a}}+\dfrac{\text{b}+\text{c}}{\text{b}-\text{c}}=1$.
⇒ After cross-multiplication, we get,
\[\Rightarrow (\text{b}+\text{a})(\text{b}-\text{c})+(\text{b}+\text{c})(\text{b}-\text{a})=(\text{b}-\text{a})(\text{b}-\text{c})\]
Now, multiplying
\[\Rightarrow {{\text{b}}^{\text{2}}}-\text{bc}+\text{ab}-\text{ac}+{{\text{b}}^{\text{2}}}-\text{ab}+\text{bc}-\text{ac}={{\text{b}}^{\text{2}}}-\text{ab}-\text{bc}+\text{ac}\]
\[\Rightarrow {{\text{b}}^{\text{2}}}-2\text{ac}=-\text{ab}-\text{bc}+\text{ac}\]
\[\Rightarrow {{\text{b}}^{\text{2}}}=\dfrac{-\text{ab}-\text{bc}+\text{ac}}{2\text{ac}}\]
That is False.
Hence, the correct answer is none of the above.
Note: The above question is of arithmetic progression in which A sequence of numbers is called an arithmetic progression if the difference between any two consecutive terms is always same and the h.p is a harmonic progression is a progression formed by taking the reciprocals of an arithmetic progression.
Here, H.P = $\dfrac{1}{\text{b}}-\dfrac{1}{\text{a}}=\dfrac{1}{\text{c}}-\dfrac{1}{\text{b}}$
,where, a,b.c and d is the number of a series.then, check all option.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE