
If a, b and c are in A.P, then the value of \[{{a}^{3}}+{{c}^{3}}-8{{b}^{3}}\] is
(a) \[2ab\]
(b) \[6ab\]
(c) \[4ab\]
(d) None of the above
Answer
556.8k+ views
Hint: We solve this problem by using the general condition of A.P that is the sum of first and last term of A.P of three terms is equal to twice the middle term that is if \[p,q,r\] are in A.P then,
\[p+r=2q\]
Then we apply a cube on both sides to get the required result.
Complete step by step answer:
We are given that the terms that are in A.P are
\[a,b,c\]
We know that the general condition of A.P that is the sum of first and last term of A.P of three terms is equal to twice the middle term that is if \[p,q,r\] are in A.P then,
\[p+r=2q\]
By using the above formula to given A.P we get
\[\Rightarrow a+c=2b......equation(i)\]
Now, by cubing on both sides we get
\[\Rightarrow {{\left( a+c \right)}^{3}}={{\left( 2b \right)}^{3}}\]
We know that the formula for cube of sum of two terms that is
\[{{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3xy\left( x+y \right)\]
By using the above formula we get
\[\begin{align}
& \Rightarrow {{a}^{3}}+{{c}^{3}}+3ac\left( a+c \right)=8{{b}^{3}} \\
& \Rightarrow {{a}^{3}}+{{c}^{3}}-8{{b}^{3}}=-3ac\left( a+c \right) \\
\end{align}\]
By substituting the value of \[\left( a+c \right)\] from equation (i) in above equation we get
\[\begin{align}
& \Rightarrow {{a}^{3}}+{{c}^{3}}-8{{b}^{3}}=-3ac\left( 2b \right) \\
& \Rightarrow {{a}^{3}}+{{c}^{3}}-8{{b}^{3}}=-6abc \\
\end{align}\]
Therefore the required value is
\[\therefore {{a}^{3}}+{{c}^{3}}-8{{b}^{3}}=-6abc\]
So, the correct answer is “Option d”.
Note: We can solve this problem in another method that is by taking the required value.
Let us assume that the required value as
\[\Rightarrow A={{a}^{3}}+{{c}^{3}}-8{{b}^{3}}\]
We know that the formula of sum of cube of two terms that is
\[{{x}^{3}}+{{y}^{3}}={{\left( x+y \right)}^{3}}-3xy\left( x+y \right)\]
By using the above formula we get
\[\Rightarrow A={{\left( a+c \right)}^{3}}-3ac\left( a+c \right)-8{{b}^{3}}\]
By substituting the value of \[\left( a+c \right)\] from equation (i) in above equation we get
\[\begin{align}
& \Rightarrow A={{\left( 2b \right)}^{3}}-3ac\left( 2b \right)-8{{b}^{3}} \\
& \Rightarrow A=8{{b}^{3}}-6abc+8{{b}^{3}} \\
& \Rightarrow A=-6abc \\
\end{align}\]
Therefore the required value is
\[\therefore {{a}^{3}}+{{c}^{3}}-8{{b}^{3}}=-6abc\]
So, option (d) is the correct answer.
\[p+r=2q\]
Then we apply a cube on both sides to get the required result.
Complete step by step answer:
We are given that the terms that are in A.P are
\[a,b,c\]
We know that the general condition of A.P that is the sum of first and last term of A.P of three terms is equal to twice the middle term that is if \[p,q,r\] are in A.P then,
\[p+r=2q\]
By using the above formula to given A.P we get
\[\Rightarrow a+c=2b......equation(i)\]
Now, by cubing on both sides we get
\[\Rightarrow {{\left( a+c \right)}^{3}}={{\left( 2b \right)}^{3}}\]
We know that the formula for cube of sum of two terms that is
\[{{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3xy\left( x+y \right)\]
By using the above formula we get
\[\begin{align}
& \Rightarrow {{a}^{3}}+{{c}^{3}}+3ac\left( a+c \right)=8{{b}^{3}} \\
& \Rightarrow {{a}^{3}}+{{c}^{3}}-8{{b}^{3}}=-3ac\left( a+c \right) \\
\end{align}\]
By substituting the value of \[\left( a+c \right)\] from equation (i) in above equation we get
\[\begin{align}
& \Rightarrow {{a}^{3}}+{{c}^{3}}-8{{b}^{3}}=-3ac\left( 2b \right) \\
& \Rightarrow {{a}^{3}}+{{c}^{3}}-8{{b}^{3}}=-6abc \\
\end{align}\]
Therefore the required value is
\[\therefore {{a}^{3}}+{{c}^{3}}-8{{b}^{3}}=-6abc\]
So, the correct answer is “Option d”.
Note: We can solve this problem in another method that is by taking the required value.
Let us assume that the required value as
\[\Rightarrow A={{a}^{3}}+{{c}^{3}}-8{{b}^{3}}\]
We know that the formula of sum of cube of two terms that is
\[{{x}^{3}}+{{y}^{3}}={{\left( x+y \right)}^{3}}-3xy\left( x+y \right)\]
By using the above formula we get
\[\Rightarrow A={{\left( a+c \right)}^{3}}-3ac\left( a+c \right)-8{{b}^{3}}\]
By substituting the value of \[\left( a+c \right)\] from equation (i) in above equation we get
\[\begin{align}
& \Rightarrow A={{\left( 2b \right)}^{3}}-3ac\left( 2b \right)-8{{b}^{3}} \\
& \Rightarrow A=8{{b}^{3}}-6abc+8{{b}^{3}} \\
& \Rightarrow A=-6abc \\
\end{align}\]
Therefore the required value is
\[\therefore {{a}^{3}}+{{c}^{3}}-8{{b}^{3}}=-6abc\]
So, option (d) is the correct answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

