Answer
Verified
428.4k+ views
Hint: We solve this problem by using the general condition of A.P that is the sum of first and last term of A.P of three terms is equal to twice the middle term that is if \[p,q,r\] are in A.P then,
\[p+r=2q\]
Then we apply a cube on both sides to get the required result.
Complete step by step answer:
We are given that the terms that are in A.P are
\[a,b,c\]
We know that the general condition of A.P that is the sum of first and last term of A.P of three terms is equal to twice the middle term that is if \[p,q,r\] are in A.P then,
\[p+r=2q\]
By using the above formula to given A.P we get
\[\Rightarrow a+c=2b......equation(i)\]
Now, by cubing on both sides we get
\[\Rightarrow {{\left( a+c \right)}^{3}}={{\left( 2b \right)}^{3}}\]
We know that the formula for cube of sum of two terms that is
\[{{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3xy\left( x+y \right)\]
By using the above formula we get
\[\begin{align}
& \Rightarrow {{a}^{3}}+{{c}^{3}}+3ac\left( a+c \right)=8{{b}^{3}} \\
& \Rightarrow {{a}^{3}}+{{c}^{3}}-8{{b}^{3}}=-3ac\left( a+c \right) \\
\end{align}\]
By substituting the value of \[\left( a+c \right)\] from equation (i) in above equation we get
\[\begin{align}
& \Rightarrow {{a}^{3}}+{{c}^{3}}-8{{b}^{3}}=-3ac\left( 2b \right) \\
& \Rightarrow {{a}^{3}}+{{c}^{3}}-8{{b}^{3}}=-6abc \\
\end{align}\]
Therefore the required value is
\[\therefore {{a}^{3}}+{{c}^{3}}-8{{b}^{3}}=-6abc\]
So, the correct answer is “Option d”.
Note: We can solve this problem in another method that is by taking the required value.
Let us assume that the required value as
\[\Rightarrow A={{a}^{3}}+{{c}^{3}}-8{{b}^{3}}\]
We know that the formula of sum of cube of two terms that is
\[{{x}^{3}}+{{y}^{3}}={{\left( x+y \right)}^{3}}-3xy\left( x+y \right)\]
By using the above formula we get
\[\Rightarrow A={{\left( a+c \right)}^{3}}-3ac\left( a+c \right)-8{{b}^{3}}\]
By substituting the value of \[\left( a+c \right)\] from equation (i) in above equation we get
\[\begin{align}
& \Rightarrow A={{\left( 2b \right)}^{3}}-3ac\left( 2b \right)-8{{b}^{3}} \\
& \Rightarrow A=8{{b}^{3}}-6abc+8{{b}^{3}} \\
& \Rightarrow A=-6abc \\
\end{align}\]
Therefore the required value is
\[\therefore {{a}^{3}}+{{c}^{3}}-8{{b}^{3}}=-6abc\]
So, option (d) is the correct answer.
\[p+r=2q\]
Then we apply a cube on both sides to get the required result.
Complete step by step answer:
We are given that the terms that are in A.P are
\[a,b,c\]
We know that the general condition of A.P that is the sum of first and last term of A.P of three terms is equal to twice the middle term that is if \[p,q,r\] are in A.P then,
\[p+r=2q\]
By using the above formula to given A.P we get
\[\Rightarrow a+c=2b......equation(i)\]
Now, by cubing on both sides we get
\[\Rightarrow {{\left( a+c \right)}^{3}}={{\left( 2b \right)}^{3}}\]
We know that the formula for cube of sum of two terms that is
\[{{\left( x+y \right)}^{3}}={{x}^{3}}+{{y}^{3}}+3xy\left( x+y \right)\]
By using the above formula we get
\[\begin{align}
& \Rightarrow {{a}^{3}}+{{c}^{3}}+3ac\left( a+c \right)=8{{b}^{3}} \\
& \Rightarrow {{a}^{3}}+{{c}^{3}}-8{{b}^{3}}=-3ac\left( a+c \right) \\
\end{align}\]
By substituting the value of \[\left( a+c \right)\] from equation (i) in above equation we get
\[\begin{align}
& \Rightarrow {{a}^{3}}+{{c}^{3}}-8{{b}^{3}}=-3ac\left( 2b \right) \\
& \Rightarrow {{a}^{3}}+{{c}^{3}}-8{{b}^{3}}=-6abc \\
\end{align}\]
Therefore the required value is
\[\therefore {{a}^{3}}+{{c}^{3}}-8{{b}^{3}}=-6abc\]
So, the correct answer is “Option d”.
Note: We can solve this problem in another method that is by taking the required value.
Let us assume that the required value as
\[\Rightarrow A={{a}^{3}}+{{c}^{3}}-8{{b}^{3}}\]
We know that the formula of sum of cube of two terms that is
\[{{x}^{3}}+{{y}^{3}}={{\left( x+y \right)}^{3}}-3xy\left( x+y \right)\]
By using the above formula we get
\[\Rightarrow A={{\left( a+c \right)}^{3}}-3ac\left( a+c \right)-8{{b}^{3}}\]
By substituting the value of \[\left( a+c \right)\] from equation (i) in above equation we get
\[\begin{align}
& \Rightarrow A={{\left( 2b \right)}^{3}}-3ac\left( 2b \right)-8{{b}^{3}} \\
& \Rightarrow A=8{{b}^{3}}-6abc+8{{b}^{3}} \\
& \Rightarrow A=-6abc \\
\end{align}\]
Therefore the required value is
\[\therefore {{a}^{3}}+{{c}^{3}}-8{{b}^{3}}=-6abc\]
So, option (d) is the correct answer.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE