Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

If ${\text{A}}$ and ${\text{B}}$ are two matrices such that $AB = B$ and $BA = A$, then ${A^2} + {B^2}$equals.
${\text{A}}.$ ${\text{2}}AB$
${\text{B}}.$ ${\text{2}}BA$
${\text{C}}.$ $A + B$
${\text{D}}.$ $AB$

seo-qna
Last updated date: 23rd Jul 2024
Total views: 453.9k
Views today: 9.53k
Answer
VerifiedVerified
453.9k+ views
Hint:-Here, we go through by writing ${A^2} = A.A$ and ${B^2} = B.B$ then rearrange it.

We have to find ${A^2} + {B^2}$
Given, $AB = B$ and $BA = A$
$ \Rightarrow {A^2} = A.A = A\left( {BA} \right) = \left( {AB} \right)A = BA = A$
$ \Rightarrow {B^2} = B.B = B.\left( {AB} \right) = \left( {BA} \right)B = AB = B$
$ \Rightarrow {A^2} + {B^2} = A + B$
So, option ${\text{C}}$ is the correct answer.

Note:-Whenever we face such a type of question of matrix the key concept for solving the question is you have to proceed according to what is given in question, and try to rearrange the terms to get an answer.