Answer
Verified
492k+ views
Hint: For independent events, \[P(A \cap B) = P(A).P(B)\] . Hence, we find \[P(A \cap B)\] and then we find \[P(A).P(B)\] and show that they both are equal.
Complete step-by-step answer:
Independent events are events such that probability of occurrence of one of them does not affect the occurrence of the other.
Independent events A and B satisfy the relation as follows:
\[P(A \cap B) = P(A).P(B){\text{ }}..........{\text{(1)}}\]
From the figure, we can observe that the sum of probability of occurrence of the event A and probability of occurrence of event B is equal to the sum of probability of occurrence of both event A and B and probability of occurrence of event A or event B.
\[P(A) + P(B) = P(A \cap B) + P(A \cup B){\text{ }}..........{\text{(2)}}\]
The probabilities of A, B and \[A \cup B\] are given as follows:
\[P(A) = \dfrac{1}{4}\]
\[P(B) = \dfrac{1}{3}\]
\[P(A \cup B) = \dfrac{1}{2}\]
Substituting these in equation (2), we get:
\[\dfrac{1}{4} + \dfrac{1}{3} = P(A \cap B) + \dfrac{1}{2}{\text{ }}\]
Simplifying the left-hand side, we get:
\[\dfrac{{3 + 4}}{{12}} = P(A \cap B) + \dfrac{1}{2}\]
\[\dfrac{7}{{12}} = P(A \cap B) + \dfrac{1}{2}\]
Now, solving for \[P(A \cap B)\] , we get:
\[P(A \cap B) = \dfrac{7}{{12}} - \dfrac{1}{2}\]
Simplifying the right-hand side of the equation, we get:
\[P(A \cap B) = \dfrac{{7 - 6}}{{12}}\]
\[P(A \cap B) = \dfrac{1}{{12}}{\text{ }}..........{\text{(3)}}\]
Hence, we obtained the value of \[P(A \cap B)\] .
Next, we compute the value of the product of probability of A and B.
We have:
\[P(A).P(B) = \dfrac{1}{4}.\dfrac{1}{3}\]
Multiplying the right-hand side of the equation, we have:
\[P(A).P(B) = \dfrac{1}{{12}}{\text{ }}...........{\text{(4)}}\]
From, equation (3) and equation (4), we observe that both the RHS are equal, hence LHS also are equal, we have:
\[P(A).P(B) = P(A \cap B)\]
This is nothing but equation (1), satisfying the condition for independent events.
Hence, we showed that A and B are independent events.
Note: A common mistake you can make is taking \[P(A) + P(B) = 1 = P(A \cup B) + P(A \cap B)\] and proceeding to solve for \[P(A \cap B)\] , which is wrong. You can observe that \[P(A) + P(B) = \dfrac{1}{4} + \dfrac{1}{3} = \dfrac{7}{{12}} \ne 1\] . However, \[P(A) + P(B) = P(A \cup B) + P(A \cap B)\] , always holds true.
Complete step-by-step answer:
Independent events are events such that probability of occurrence of one of them does not affect the occurrence of the other.
Independent events A and B satisfy the relation as follows:
\[P(A \cap B) = P(A).P(B){\text{ }}..........{\text{(1)}}\]
From the figure, we can observe that the sum of probability of occurrence of the event A and probability of occurrence of event B is equal to the sum of probability of occurrence of both event A and B and probability of occurrence of event A or event B.
\[P(A) + P(B) = P(A \cap B) + P(A \cup B){\text{ }}..........{\text{(2)}}\]
The probabilities of A, B and \[A \cup B\] are given as follows:
\[P(A) = \dfrac{1}{4}\]
\[P(B) = \dfrac{1}{3}\]
\[P(A \cup B) = \dfrac{1}{2}\]
Substituting these in equation (2), we get:
\[\dfrac{1}{4} + \dfrac{1}{3} = P(A \cap B) + \dfrac{1}{2}{\text{ }}\]
Simplifying the left-hand side, we get:
\[\dfrac{{3 + 4}}{{12}} = P(A \cap B) + \dfrac{1}{2}\]
\[\dfrac{7}{{12}} = P(A \cap B) + \dfrac{1}{2}\]
Now, solving for \[P(A \cap B)\] , we get:
\[P(A \cap B) = \dfrac{7}{{12}} - \dfrac{1}{2}\]
Simplifying the right-hand side of the equation, we get:
\[P(A \cap B) = \dfrac{{7 - 6}}{{12}}\]
\[P(A \cap B) = \dfrac{1}{{12}}{\text{ }}..........{\text{(3)}}\]
Hence, we obtained the value of \[P(A \cap B)\] .
Next, we compute the value of the product of probability of A and B.
We have:
\[P(A).P(B) = \dfrac{1}{4}.\dfrac{1}{3}\]
Multiplying the right-hand side of the equation, we have:
\[P(A).P(B) = \dfrac{1}{{12}}{\text{ }}...........{\text{(4)}}\]
From, equation (3) and equation (4), we observe that both the RHS are equal, hence LHS also are equal, we have:
\[P(A).P(B) = P(A \cap B)\]
This is nothing but equation (1), satisfying the condition for independent events.
Hence, we showed that A and B are independent events.
Note: A common mistake you can make is taking \[P(A) + P(B) = 1 = P(A \cup B) + P(A \cap B)\] and proceeding to solve for \[P(A \cap B)\] , which is wrong. You can observe that \[P(A) + P(B) = \dfrac{1}{4} + \dfrac{1}{3} = \dfrac{7}{{12}} \ne 1\] . However, \[P(A) + P(B) = P(A \cup B) + P(A \cap B)\] , always holds true.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE