If \[{\text{A = \{ 0,1\} }}\]and \[{\text{B = \{ 1,2,3\} }}\], show that \[{\text{A}} \times {\text{B}} \ne {\text{B}} \times {\text{A}}\]
Answer
Verified
475.5k+ views
Hint: For any of the random given set, let \[{\text{A = \{ a\} ,B = \{ b\} }}\]than \[{\text{A}} \times {\text{B}} = \{ (a,b)\} \] apply this concept in the above given question, and we can continue with the calculation of both the terms and we can show that \[{\text{A}} \times {\text{B}} \ne {\text{B}} \times {\text{A}}\].
Complete step by step answer:
As per the given sets are \[{\text{A = \{ 0,1\} }}\]and \[{\text{B = \{ 1,2,3\} }}\]
Let us first calculate the term of \[{\text{A}} \times {\text{B}}\],
As, if \[{\text{A = \{ a\} ,B = \{ b\} }}\]then \[{\text{A}} \times {\text{B}} = \{ (a,b)\} \],
So we get,
\[{\text{A}} \times {\text{B}} = \{ (0,1),(0,2),(0,3),(1,1),(1,2),(1,3)\} \]
And then calculating for \[{\text{B}} \times {\text{A}}\],
\[{\text{B}} \times {\text{A}} = \{ (1,0),(1,1),(2,0),(2,1),(3,0),(3,1)\} \]
Hence, from the above sets we can clearly interpret that \[{\text{A}} \times {\text{B}} \ne {\text{B}} \times {\text{A}}\].
Hence, proved.
Note: A relation between two sets is a collection of ordered pairs containing one object from each set. If the object x is from the first set and the object y is from the second set, then the objects are said to be related if the ordered pair \[{\text{(x,y)}}\] is in the relation.
1)Sets are collections of well-defined objects; relations indicate relationships between members of two sets A and B, and functions are a special type of relationship where there is exactly (or at most) one relationship for each element \[{\text{a}} \in {\text{A}}\] with an element in B.
2)Relations, Cartesian product, Relation on a Set. A relation R from X to Y is a subset of the Cartesian product \[{\text{X$\times$Y}}\]. The domain of a relation R is the set of all the first components of the ordered pairs that constitute the relation. The range of R is the set of all the second components of every ordered pair in R.
Complete step by step answer:
As per the given sets are \[{\text{A = \{ 0,1\} }}\]and \[{\text{B = \{ 1,2,3\} }}\]
Let us first calculate the term of \[{\text{A}} \times {\text{B}}\],
As, if \[{\text{A = \{ a\} ,B = \{ b\} }}\]then \[{\text{A}} \times {\text{B}} = \{ (a,b)\} \],
So we get,
\[{\text{A}} \times {\text{B}} = \{ (0,1),(0,2),(0,3),(1,1),(1,2),(1,3)\} \]
And then calculating for \[{\text{B}} \times {\text{A}}\],
\[{\text{B}} \times {\text{A}} = \{ (1,0),(1,1),(2,0),(2,1),(3,0),(3,1)\} \]
Hence, from the above sets we can clearly interpret that \[{\text{A}} \times {\text{B}} \ne {\text{B}} \times {\text{A}}\].
Hence, proved.
Note: A relation between two sets is a collection of ordered pairs containing one object from each set. If the object x is from the first set and the object y is from the second set, then the objects are said to be related if the ordered pair \[{\text{(x,y)}}\] is in the relation.
1)Sets are collections of well-defined objects; relations indicate relationships between members of two sets A and B, and functions are a special type of relationship where there is exactly (or at most) one relationship for each element \[{\text{a}} \in {\text{A}}\] with an element in B.
2)Relations, Cartesian product, Relation on a Set. A relation R from X to Y is a subset of the Cartesian product \[{\text{X$\times$Y}}\]. The domain of a relation R is the set of all the first components of the ordered pairs that constitute the relation. The range of R is the set of all the second components of every ordered pair in R.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE