
If \[A + B = 225\], prove that \[\tan A + \tan B = 1 - \tan A\tan B\].
Answer
517.5k+ views
Hint:- \[\tan (x + y) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}\]
We are given with,
\[ \Rightarrow A + B = 225\] (1)
So, for proving the given result.
Taking tan both sides of equation 1. We get,
\[ \Rightarrow \tan (A + B) = \tan (225)\] (2)
Now, angle 225 in the RHS of equation 2, can also be written as \[180 + 45\].
So, \[\tan (A + B) = \tan (180 + 45)\] (3)
And, as we know that, according to trigonometric identities.
\[ \Rightarrow \tan (180 + \theta )\] can be written as \[\tan \theta \].
Now, equation 3 becomes,
\[ \Rightarrow \tan (A + B) = \tan (45)\]
And according to trigonometric identities \[\tan (45) = 1\].
So, above equation becomes,
\[ \Rightarrow \tan (A + B) = 1\] (4)
Now, we have to use \[\tan (x + y)\]identity. To solve equation 4.
As we know that,
\[ \Rightarrow \tan (x + y) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}\]
So, \[\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
So, equation 4 becomes,
\[ \Rightarrow \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} = 1\]
Now, cross-multiplying both sides of the above equation. We will get \[\tan A + \tan B = 1 - \tan A\tan B\].
Hence, \[\tan A + \tan B = 1 - \tan A\tan B\]
Note:- Whenever we came up with this type of problem where we are given sum of two
numbers and had to prove a result in which tangent of angle is present. Then we apply tan
to both sides of a given equation and then use \[\tan (x + y)\]identity to get the required
result.
We are given with,
\[ \Rightarrow A + B = 225\] (1)
So, for proving the given result.
Taking tan both sides of equation 1. We get,
\[ \Rightarrow \tan (A + B) = \tan (225)\] (2)
Now, angle 225 in the RHS of equation 2, can also be written as \[180 + 45\].
So, \[\tan (A + B) = \tan (180 + 45)\] (3)
And, as we know that, according to trigonometric identities.
\[ \Rightarrow \tan (180 + \theta )\] can be written as \[\tan \theta \].
Now, equation 3 becomes,
\[ \Rightarrow \tan (A + B) = \tan (45)\]
And according to trigonometric identities \[\tan (45) = 1\].
So, above equation becomes,
\[ \Rightarrow \tan (A + B) = 1\] (4)
Now, we have to use \[\tan (x + y)\]identity. To solve equation 4.
As we know that,
\[ \Rightarrow \tan (x + y) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}\]
So, \[\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
So, equation 4 becomes,
\[ \Rightarrow \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} = 1\]
Now, cross-multiplying both sides of the above equation. We will get \[\tan A + \tan B = 1 - \tan A\tan B\].
Hence, \[\tan A + \tan B = 1 - \tan A\tan B\]
Note:- Whenever we came up with this type of problem where we are given sum of two
numbers and had to prove a result in which tangent of angle is present. Then we apply tan
to both sides of a given equation and then use \[\tan (x + y)\]identity to get the required
result.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

State the laws of reflection of light
