
If \[A + B = 225\], prove that \[\tan A + \tan B = 1 - \tan A\tan B\].
Answer
609.9k+ views
Hint:- \[\tan (x + y) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}\]
We are given with,
\[ \Rightarrow A + B = 225\] (1)
So, for proving the given result.
Taking tan both sides of equation 1. We get,
\[ \Rightarrow \tan (A + B) = \tan (225)\] (2)
Now, angle 225 in the RHS of equation 2, can also be written as \[180 + 45\].
So, \[\tan (A + B) = \tan (180 + 45)\] (3)
And, as we know that, according to trigonometric identities.
\[ \Rightarrow \tan (180 + \theta )\] can be written as \[\tan \theta \].
Now, equation 3 becomes,
\[ \Rightarrow \tan (A + B) = \tan (45)\]
And according to trigonometric identities \[\tan (45) = 1\].
So, above equation becomes,
\[ \Rightarrow \tan (A + B) = 1\] (4)
Now, we have to use \[\tan (x + y)\]identity. To solve equation 4.
As we know that,
\[ \Rightarrow \tan (x + y) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}\]
So, \[\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
So, equation 4 becomes,
\[ \Rightarrow \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} = 1\]
Now, cross-multiplying both sides of the above equation. We will get \[\tan A + \tan B = 1 - \tan A\tan B\].
Hence, \[\tan A + \tan B = 1 - \tan A\tan B\]
Note:- Whenever we came up with this type of problem where we are given sum of two
numbers and had to prove a result in which tangent of angle is present. Then we apply tan
to both sides of a given equation and then use \[\tan (x + y)\]identity to get the required
result.
We are given with,
\[ \Rightarrow A + B = 225\] (1)
So, for proving the given result.
Taking tan both sides of equation 1. We get,
\[ \Rightarrow \tan (A + B) = \tan (225)\] (2)
Now, angle 225 in the RHS of equation 2, can also be written as \[180 + 45\].
So, \[\tan (A + B) = \tan (180 + 45)\] (3)
And, as we know that, according to trigonometric identities.
\[ \Rightarrow \tan (180 + \theta )\] can be written as \[\tan \theta \].
Now, equation 3 becomes,
\[ \Rightarrow \tan (A + B) = \tan (45)\]
And according to trigonometric identities \[\tan (45) = 1\].
So, above equation becomes,
\[ \Rightarrow \tan (A + B) = 1\] (4)
Now, we have to use \[\tan (x + y)\]identity. To solve equation 4.
As we know that,
\[ \Rightarrow \tan (x + y) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}\]
So, \[\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
So, equation 4 becomes,
\[ \Rightarrow \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} = 1\]
Now, cross-multiplying both sides of the above equation. We will get \[\tan A + \tan B = 1 - \tan A\tan B\].
Hence, \[\tan A + \tan B = 1 - \tan A\tan B\]
Note:- Whenever we came up with this type of problem where we are given sum of two
numbers and had to prove a result in which tangent of angle is present. Then we apply tan
to both sides of a given equation and then use \[\tan (x + y)\]identity to get the required
result.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

