Answer
Verified
456k+ views
Hint: In this particular question use the concept of standard identity such as ${\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca$ and also use the standard identity $\left( {{a^3} + {b^3} + {c^3} - 3abc} \right) = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - \left( {ab + bc + ca} \right)} \right)$ so use these concepts to reach the solution of the question.
Complete step-by-step solution:
Given data:
$a + b + c = 5$...................... (1)
And $ab + bc + ca = 10$................ (2)
Now we have to find out the value of ${a^3} + {b^3} + {c^3} - 3abc = - 25$
Proof –
Consider the LHS of the above equation we have,
$ \Rightarrow {a^3} + {b^3} + {c^3} - 3abc$
Now as we all know the common known fact or the standard identity that ${\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca$.
Now the above equation is also written as,
$ \Rightarrow {\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ca} \right)$
Now substitute the values from equations (1) and (2) in the above equation we have,
$ \Rightarrow {\left( 5 \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {10} \right)$
Now simplify this we have,
\[ \Rightarrow 25 - 20 = {a^2} + {b^2} + {c^2}\]
\[ \Rightarrow {a^2} + {b^2} + {c^2} = 5\].................... (3)
Now as we all know a common fact that
$\left( {{a^3} + {b^3} + {c^3} - 3abc} \right) = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - \left( {ab + bc + ca} \right)} \right)$
Now substitute the values from equations (1), (2) and (3) in the above equation we have,
$ \Rightarrow \left( {{a^3} + {b^3} + {c^3} - 3abc} \right) = \left( 5 \right)\left( {5 - \left( {10} \right)} \right)$
Now simplify this we have,
$ \Rightarrow \left( {{a^3} + {b^3} + {c^3} - 3abc} \right) = \left( 5 \right)\left( { - 5} \right) = - 25$ = RHS
Hence Proved.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the standard identities which are all stated above which is very useful to solve these types of the problem so from the first identity calculate the value of ${a^2} + {b^2} + {c^2}$, then from the second identity calculate the value of asked expression as above we will get the required answer.
Complete step-by-step solution:
Given data:
$a + b + c = 5$...................... (1)
And $ab + bc + ca = 10$................ (2)
Now we have to find out the value of ${a^3} + {b^3} + {c^3} - 3abc = - 25$
Proof –
Consider the LHS of the above equation we have,
$ \Rightarrow {a^3} + {b^3} + {c^3} - 3abc$
Now as we all know the common known fact or the standard identity that ${\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca$.
Now the above equation is also written as,
$ \Rightarrow {\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ca} \right)$
Now substitute the values from equations (1) and (2) in the above equation we have,
$ \Rightarrow {\left( 5 \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {10} \right)$
Now simplify this we have,
\[ \Rightarrow 25 - 20 = {a^2} + {b^2} + {c^2}\]
\[ \Rightarrow {a^2} + {b^2} + {c^2} = 5\].................... (3)
Now as we all know a common fact that
$\left( {{a^3} + {b^3} + {c^3} - 3abc} \right) = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - \left( {ab + bc + ca} \right)} \right)$
Now substitute the values from equations (1), (2) and (3) in the above equation we have,
$ \Rightarrow \left( {{a^3} + {b^3} + {c^3} - 3abc} \right) = \left( 5 \right)\left( {5 - \left( {10} \right)} \right)$
Now simplify this we have,
$ \Rightarrow \left( {{a^3} + {b^3} + {c^3} - 3abc} \right) = \left( 5 \right)\left( { - 5} \right) = - 25$ = RHS
Hence Proved.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the standard identities which are all stated above which is very useful to solve these types of the problem so from the first identity calculate the value of ${a^2} + {b^2} + {c^2}$, then from the second identity calculate the value of asked expression as above we will get the required answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE