
If \[2{\text{A + 3B = }}\left[ {\begin{array}{*{20}{c}}
2&{ - 1}&4 \\
3&2&5
\end{array}} \right]\] and \[{\text{A + 2B = }}\left[ {\begin{array}{*{20}{c}}
5&0&3 \\
1&6&2
\end{array}} \right]\] then find B-
A)$\left[ {\begin{array}{*{20}{c}}
8&{ - 1}&2 \\
{ - 1}&{10}&{ - 1}
\end{array}} \right]$ B)$\left[ {\begin{array}{*{20}{c}}
8&1&2 \\
{ - 1}&{10}&{ - 1}
\end{array}} \right]$ C) $\left[ {\begin{array}{*{20}{c}}
8&1&{ - 2} \\
{ - 1}&{10}&{ - 1}
\end{array}} \right]$ D) $\left[ {\begin{array}{*{20}{c}}
8&1&2 \\
1&{10}&1
\end{array}} \right]$
Answer
592.2k+ views
Hint: To find the value of B, first multiply \[{\text{A + 2B = }}\left[ {\begin{array}{*{20}{c}}
5&0&3 \\
1&6&2
\end{array}} \right]\] by 2 on both sides then subtract the given \[2{\text{A + 3B = }}\left[ {\begin{array}{*{20}{c}}
2&{ - 1}&4 \\
3&2&5
\end{array}} \right]\] from the obtained multiplication result. You will get the value of B.
Complete step by step answer:
Given, \[2{\text{A + 3B = }}\left[ {\begin{array}{*{20}{c}}
2&{ - 1}&4 \\
3&2&5
\end{array}} \right]\] ---- (i)
And \[{\text{A + 2B = }}\left[ {\begin{array}{*{20}{c}}
5&0&3 \\
1&6&2
\end{array}} \right]\]----- (ii)
Here, the matrices given are of order $\left( {2 \times 3} \right)$ .We have to find B. First we multiply eq. (ii) by 2 on both sides,
\[
\Rightarrow {\text{2}}\left( {{\text{A + 2B}}} \right){\text{ = 2}}\left[ {\begin{array}{*{20}{c}}
5&0&3 \\
1&6&2
\end{array}} \right] \\
\Rightarrow 2{\text{A + 4B = }}\left[ {\begin{array}{*{20}{c}}
{10}&0&6 \\
2&{12}&4
\end{array}} \right] \\
\]
Now on subtracting eq. (i) from the obtained result, we have
$
\Rightarrow 2{\text{A + 4B - }}\left( {2{\text{A + 3B}}} \right) = \left[ {\begin{array}{*{20}{c}}
{10}&0&6 \\
2&{12}&4
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
2&{ - 1}&4 \\
3&2&5
\end{array}} \right] \\
\Rightarrow {\text{2A + 4B - 2A - 3B = }}\left[ {\begin{array}{*{20}{c}}
{10 - 2}&{0 - \left( { - 1} \right)}&{6 - 4} \\
{2 - 3}&{12 - 2}&{4 - 5}
\end{array}} \right] \\
$
On solving the above expression, we get
$ \Rightarrow {\text{B = }}\left[ {\begin{array}{*{20}{c}}
8&1&2 \\
{ - 1}&{10}&{ - 1}
\end{array}} \right]$
Hence, the correct answer is ‘B’.
Note: Here, the order of matrices is $\left( {2 \times 3} \right)$ because order=number of rows × number of columns. Also, since the order of both matrices [the obtained one and eq.(i)] is the same, so we can subtract the elements in the same position easily and obtain the matrix of the same order.
5&0&3 \\
1&6&2
\end{array}} \right]\] by 2 on both sides then subtract the given \[2{\text{A + 3B = }}\left[ {\begin{array}{*{20}{c}}
2&{ - 1}&4 \\
3&2&5
\end{array}} \right]\] from the obtained multiplication result. You will get the value of B.
Complete step by step answer:
Given, \[2{\text{A + 3B = }}\left[ {\begin{array}{*{20}{c}}
2&{ - 1}&4 \\
3&2&5
\end{array}} \right]\] ---- (i)
And \[{\text{A + 2B = }}\left[ {\begin{array}{*{20}{c}}
5&0&3 \\
1&6&2
\end{array}} \right]\]----- (ii)
Here, the matrices given are of order $\left( {2 \times 3} \right)$ .We have to find B. First we multiply eq. (ii) by 2 on both sides,
\[
\Rightarrow {\text{2}}\left( {{\text{A + 2B}}} \right){\text{ = 2}}\left[ {\begin{array}{*{20}{c}}
5&0&3 \\
1&6&2
\end{array}} \right] \\
\Rightarrow 2{\text{A + 4B = }}\left[ {\begin{array}{*{20}{c}}
{10}&0&6 \\
2&{12}&4
\end{array}} \right] \\
\]
Now on subtracting eq. (i) from the obtained result, we have
$
\Rightarrow 2{\text{A + 4B - }}\left( {2{\text{A + 3B}}} \right) = \left[ {\begin{array}{*{20}{c}}
{10}&0&6 \\
2&{12}&4
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
2&{ - 1}&4 \\
3&2&5
\end{array}} \right] \\
\Rightarrow {\text{2A + 4B - 2A - 3B = }}\left[ {\begin{array}{*{20}{c}}
{10 - 2}&{0 - \left( { - 1} \right)}&{6 - 4} \\
{2 - 3}&{12 - 2}&{4 - 5}
\end{array}} \right] \\
$
On solving the above expression, we get
$ \Rightarrow {\text{B = }}\left[ {\begin{array}{*{20}{c}}
8&1&2 \\
{ - 1}&{10}&{ - 1}
\end{array}} \right]$
Hence, the correct answer is ‘B’.
Note: Here, the order of matrices is $\left( {2 \times 3} \right)$ because order=number of rows × number of columns. Also, since the order of both matrices [the obtained one and eq.(i)] is the same, so we can subtract the elements in the same position easily and obtain the matrix of the same order.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

