
If $2 - {\cos ^2}\theta = 3\sin \theta \cos \theta \ne \cos \theta $ than find the value of $\cot \theta $
A. \[\dfrac{1}{2}\]
B. \[0\]
C. \[ - 1\]
D. \[2\]
Answer
583.2k+ views
Hint: Here we will proceed by converting the given equation in terms of \[\tan \] by using the formulae of trigonometric ratios and trigonometric identities. Then solve the obtained equation by grouping the common terms. Further convert tan to cot to get the required answer.
Complete step-by-step answer:
The equation is $2 - {\cos ^2}\theta = 3\sin \theta \cos \theta $.
Dividing both sides with ${\cos ^2}\theta $, we have
\[
\Rightarrow \dfrac{{2 - {{\cos }^2}\theta }}{{{{\cos }^2}\theta }} = \dfrac{{3\sin \theta \cos \theta }}{{{{\cos }^2}\theta }} \\
\Rightarrow \dfrac{2}{{{{\cos }^2}\theta }} - \dfrac{{{{\cos }^2}\theta }}{{{{\cos }^2}\theta }} = \dfrac{{3\sin \theta }}{{\cos \theta }} \\
\Rightarrow 2{\sec ^2}\theta - 1 = 3\tan \theta {\text{ }}\left[ {\because \dfrac{1}{{{{\cos }^2}\theta }} = {{\sec }^2}\theta ,\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta } \right] \\
\]
We know that ${\sec ^2}\theta = {\tan ^2}\theta + 1$. By substituting this formula, we have
\[
\Rightarrow 2\left( {{{\tan }^2}\theta + 1} \right) - 1 = 3\tan \theta \\
\Rightarrow 2{\tan ^2}\theta + 2 - 1 = 3\tan \theta \\
\Rightarrow 2{\tan ^2}\theta - 3\tan \theta + 1 = 0 \\
\]
Splitting and grouping the common terms, we have
\[
\Rightarrow 2{\tan ^2}\theta - 2\tan \theta - \tan \theta + 1 = 0 \\
\Rightarrow 2\tan \theta \left( {\tan \theta - 1} \right) - 1\left( {\tan \theta - 1} \right) = 0 \\
\Rightarrow \left( {2\tan \theta - 1} \right)\left( {\tan \theta - 1} \right) = 0 \\
\therefore \tan \theta = \dfrac{1}{2},1 \\
\]
We know that \[\cot \theta = \dfrac{1}{{\tan \theta }}\]. So, we have
\[
\therefore \cot \theta = \dfrac{1}{{\tan \theta }} = \dfrac{1}{{\dfrac{1}{2}}} = 2 \\
{\text{ }}\cot \theta = \dfrac{1}{{\tan \theta }} = \dfrac{1}{1} = 1 \\
\]
Therefore, the values of \[\cot \theta \] are 1 and 2.
Thus, the correct answer is D. 2
So, the correct answer is “Option D”.
Note: Here we have used the formulae of trigonometric ratios of \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta ,\dfrac{1}{{{{\cos }^2}\theta }} = {\sec ^2}\theta ,\dfrac{1}{{\tan \theta }} = \cot \theta \]. And the trigonometric identity \[{\sec ^2}\theta = 1 + {\tan ^2}\theta \] to solve the given problem.
Complete step-by-step answer:
The equation is $2 - {\cos ^2}\theta = 3\sin \theta \cos \theta $.
Dividing both sides with ${\cos ^2}\theta $, we have
\[
\Rightarrow \dfrac{{2 - {{\cos }^2}\theta }}{{{{\cos }^2}\theta }} = \dfrac{{3\sin \theta \cos \theta }}{{{{\cos }^2}\theta }} \\
\Rightarrow \dfrac{2}{{{{\cos }^2}\theta }} - \dfrac{{{{\cos }^2}\theta }}{{{{\cos }^2}\theta }} = \dfrac{{3\sin \theta }}{{\cos \theta }} \\
\Rightarrow 2{\sec ^2}\theta - 1 = 3\tan \theta {\text{ }}\left[ {\because \dfrac{1}{{{{\cos }^2}\theta }} = {{\sec }^2}\theta ,\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta } \right] \\
\]
We know that ${\sec ^2}\theta = {\tan ^2}\theta + 1$. By substituting this formula, we have
\[
\Rightarrow 2\left( {{{\tan }^2}\theta + 1} \right) - 1 = 3\tan \theta \\
\Rightarrow 2{\tan ^2}\theta + 2 - 1 = 3\tan \theta \\
\Rightarrow 2{\tan ^2}\theta - 3\tan \theta + 1 = 0 \\
\]
Splitting and grouping the common terms, we have
\[
\Rightarrow 2{\tan ^2}\theta - 2\tan \theta - \tan \theta + 1 = 0 \\
\Rightarrow 2\tan \theta \left( {\tan \theta - 1} \right) - 1\left( {\tan \theta - 1} \right) = 0 \\
\Rightarrow \left( {2\tan \theta - 1} \right)\left( {\tan \theta - 1} \right) = 0 \\
\therefore \tan \theta = \dfrac{1}{2},1 \\
\]
We know that \[\cot \theta = \dfrac{1}{{\tan \theta }}\]. So, we have
\[
\therefore \cot \theta = \dfrac{1}{{\tan \theta }} = \dfrac{1}{{\dfrac{1}{2}}} = 2 \\
{\text{ }}\cot \theta = \dfrac{1}{{\tan \theta }} = \dfrac{1}{1} = 1 \\
\]
Therefore, the values of \[\cot \theta \] are 1 and 2.
Thus, the correct answer is D. 2
So, the correct answer is “Option D”.
Note: Here we have used the formulae of trigonometric ratios of \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta ,\dfrac{1}{{{{\cos }^2}\theta }} = {\sec ^2}\theta ,\dfrac{1}{{\tan \theta }} = \cot \theta \]. And the trigonometric identity \[{\sec ^2}\theta = 1 + {\tan ^2}\theta \] to solve the given problem.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

