Answer
Verified
436.8k+ views
Hint: Here we will proceed by converting the given equation in terms of \[\tan \] by using the formulae of trigonometric ratios and trigonometric identities. Then solve the obtained equation by grouping the common terms. Further convert tan to cot to get the required answer.
Complete step-by-step answer:
The equation is $2 - {\cos ^2}\theta = 3\sin \theta \cos \theta $.
Dividing both sides with ${\cos ^2}\theta $, we have
\[
\Rightarrow \dfrac{{2 - {{\cos }^2}\theta }}{{{{\cos }^2}\theta }} = \dfrac{{3\sin \theta \cos \theta }}{{{{\cos }^2}\theta }} \\
\Rightarrow \dfrac{2}{{{{\cos }^2}\theta }} - \dfrac{{{{\cos }^2}\theta }}{{{{\cos }^2}\theta }} = \dfrac{{3\sin \theta }}{{\cos \theta }} \\
\Rightarrow 2{\sec ^2}\theta - 1 = 3\tan \theta {\text{ }}\left[ {\because \dfrac{1}{{{{\cos }^2}\theta }} = {{\sec }^2}\theta ,\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta } \right] \\
\]
We know that ${\sec ^2}\theta = {\tan ^2}\theta + 1$. By substituting this formula, we have
\[
\Rightarrow 2\left( {{{\tan }^2}\theta + 1} \right) - 1 = 3\tan \theta \\
\Rightarrow 2{\tan ^2}\theta + 2 - 1 = 3\tan \theta \\
\Rightarrow 2{\tan ^2}\theta - 3\tan \theta + 1 = 0 \\
\]
Splitting and grouping the common terms, we have
\[
\Rightarrow 2{\tan ^2}\theta - 2\tan \theta - \tan \theta + 1 = 0 \\
\Rightarrow 2\tan \theta \left( {\tan \theta - 1} \right) - 1\left( {\tan \theta - 1} \right) = 0 \\
\Rightarrow \left( {2\tan \theta - 1} \right)\left( {\tan \theta - 1} \right) = 0 \\
\therefore \tan \theta = \dfrac{1}{2},1 \\
\]
We know that \[\cot \theta = \dfrac{1}{{\tan \theta }}\]. So, we have
\[
\therefore \cot \theta = \dfrac{1}{{\tan \theta }} = \dfrac{1}{{\dfrac{1}{2}}} = 2 \\
{\text{ }}\cot \theta = \dfrac{1}{{\tan \theta }} = \dfrac{1}{1} = 1 \\
\]
Therefore, the values of \[\cot \theta \] are 1 and 2.
Thus, the correct answer is D. 2
So, the correct answer is “Option D”.
Note: Here we have used the formulae of trigonometric ratios of \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta ,\dfrac{1}{{{{\cos }^2}\theta }} = {\sec ^2}\theta ,\dfrac{1}{{\tan \theta }} = \cot \theta \]. And the trigonometric identity \[{\sec ^2}\theta = 1 + {\tan ^2}\theta \] to solve the given problem.
Complete step-by-step answer:
The equation is $2 - {\cos ^2}\theta = 3\sin \theta \cos \theta $.
Dividing both sides with ${\cos ^2}\theta $, we have
\[
\Rightarrow \dfrac{{2 - {{\cos }^2}\theta }}{{{{\cos }^2}\theta }} = \dfrac{{3\sin \theta \cos \theta }}{{{{\cos }^2}\theta }} \\
\Rightarrow \dfrac{2}{{{{\cos }^2}\theta }} - \dfrac{{{{\cos }^2}\theta }}{{{{\cos }^2}\theta }} = \dfrac{{3\sin \theta }}{{\cos \theta }} \\
\Rightarrow 2{\sec ^2}\theta - 1 = 3\tan \theta {\text{ }}\left[ {\because \dfrac{1}{{{{\cos }^2}\theta }} = {{\sec }^2}\theta ,\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta } \right] \\
\]
We know that ${\sec ^2}\theta = {\tan ^2}\theta + 1$. By substituting this formula, we have
\[
\Rightarrow 2\left( {{{\tan }^2}\theta + 1} \right) - 1 = 3\tan \theta \\
\Rightarrow 2{\tan ^2}\theta + 2 - 1 = 3\tan \theta \\
\Rightarrow 2{\tan ^2}\theta - 3\tan \theta + 1 = 0 \\
\]
Splitting and grouping the common terms, we have
\[
\Rightarrow 2{\tan ^2}\theta - 2\tan \theta - \tan \theta + 1 = 0 \\
\Rightarrow 2\tan \theta \left( {\tan \theta - 1} \right) - 1\left( {\tan \theta - 1} \right) = 0 \\
\Rightarrow \left( {2\tan \theta - 1} \right)\left( {\tan \theta - 1} \right) = 0 \\
\therefore \tan \theta = \dfrac{1}{2},1 \\
\]
We know that \[\cot \theta = \dfrac{1}{{\tan \theta }}\]. So, we have
\[
\therefore \cot \theta = \dfrac{1}{{\tan \theta }} = \dfrac{1}{{\dfrac{1}{2}}} = 2 \\
{\text{ }}\cot \theta = \dfrac{1}{{\tan \theta }} = \dfrac{1}{1} = 1 \\
\]
Therefore, the values of \[\cot \theta \] are 1 and 2.
Thus, the correct answer is D. 2
So, the correct answer is “Option D”.
Note: Here we have used the formulae of trigonometric ratios of \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta ,\dfrac{1}{{{{\cos }^2}\theta }} = {\sec ^2}\theta ,\dfrac{1}{{\tan \theta }} = \cot \theta \]. And the trigonometric identity \[{\sec ^2}\theta = 1 + {\tan ^2}\theta \] to solve the given problem.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE