Answer

Verified

392.4k+ views

**Hint:**If $1,{a_1},{a_2}.....,{a_{n - 1}}$ are the ${n^{th}}$ roots of unity, that means they are the roots of the equation ${x^n} - 1 = 0$ . Express the roots of this equation in form of a product, i.e. ${x^n} - 1 = \left( {x - 1} \right)\left( {x - {a_1}} \right)\left( {x - {a_2}} \right).....\left( {x - {a_{n - 2}}} \right)\left( {x - {a_{n - 1}}} \right)$ . Now use the expansion of $\left( {{x^n} - 1} \right)$ in the left-hand side of the previous equation. Transpose the terms to obtain the required expression on one side. Put the value $x = 1$ to find the desired answer.

**Complete step-by-step answer:**Here in this problem, we are given that $1,{a_1},{a_2}.....,{a_{n - 1}}$ are the ${n^{th}}$ roots of unity, i.e. ${n^{th}}$ roots of $1$ . And then we need to find the value of the expression $\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right)......\left( {1 - {a_{n - 1}}} \right)$ . We need to find the correct answer among the four given options.

Let’s discuss what is the ${n^{th}}$ roots of unity.

As we know that the equation having a power of $'n'$ over the variable will have $'n'$ number of roots. So when we consider the equation: ${x^n} = 1$ , here we know that the variable ‘x’ can obtain ‘n’ number of roots. And these are hence called the ${n^{th}}$ roots of unity.

So, according to the question $1,{a_1},{a_2}.....,{a_{n - 1}}$ are the ‘n’ roots of the equation ${x^n} = 1$ , this can be represented by:

$ \Rightarrow {x^n} = 1 \Rightarrow {x^n} - 1 = 0$

The product of difference of all the roots with the variable will be equal to zero. Now putting $1,{a_1},{a_2}.....,{a_{n - 1}}$ as the roots of this equation, we get:

$ \Rightarrow {x^n} - 1 = \left( {x - 1} \right)\left( {x - {a_1}} \right)\left( {x - {a_2}} \right).....\left( {x - {a_{n - 2}}} \right)\left( {x - {a_{n - 1}}} \right)$

This can be further simplified by transposing the term $\left( {x - 1} \right)$ to the left side

$ \Rightarrow \dfrac{{{x^n} - 1}}{{x - 1}} = \left( {x - {a_1}} \right)\left( {x - {a_2}} \right).....\left( {x - {a_{n - 2}}} \right)\left( {x - {a_{n - 1}}} \right)$

As we know the expansion from the binomial theorem, ${x^n} - 1 = \left( {x - 1} \right)\left( {{x^{n - 1}} + {x^{n - 2}} + ...... + {x^2} + x + 1} \right)$ . We can use this in the above equation:

$ \Rightarrow \dfrac{{{x^n} - 1}}{{x - 1}} = \left( {{x^{n - 1}} + {x^{n - 2}} + ...... + {x^2} + x + 1} \right) = \left( {x - {a_1}} \right)\left( {x - {a_2}} \right).....\left( {x - {a_{n - 2}}} \right)\left( {x - {a_{n - 1}}} \right)$

Therefore, we get:

$ \Rightarrow \left( {{x^{n - 1}} + {x^{n - 2}} + ...... + {x^2} + x + 1} \right) = \left( {x - {a_1}} \right)\left( {x - {a_2}} \right).....\left( {x - {a_{n - 2}}} \right)\left( {x - {a_{n - 1}}} \right)$

For obtaining the expression $\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right)......\left( {1 - {a_{n - 1}}} \right)$on the right side of the equation, we must substitute the value $x = 1$ on both sides of the above equation.

For $x = 1$, we get:

$ \Rightarrow \left( {{1^{n - 1}} + {1^{n - 2}} + ...... + {1^2} + 1 + 1} \right) = \left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right).....\left( {1 - {a_{n - 2}}} \right)\left( {1 - {a_{n - 1}}} \right)$

Since we know ${1^m} = 1$ , so on further solving it, we have:

$ \Rightarrow \left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right).....\left( {1 - {a_{n - 2}}} \right)\left( {1 - {a_{n - 1}}} \right) = \left( {{1^{n - 1}} + {1^{n - 2}} + ...... + {1^2} + 1 + 1} \right) = \left( {1 + 1 + ....n{\text{ }}times} \right) = 1 \times n$

Therefore, we get the value of expression as:

$ \Rightarrow \left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right).....\left( {1 - {a_{n - 2}}} \right)\left( {1 - {a_{n - 1}}} \right) = n$

**Hence, the option (C) is the correct answer.**

**Note:**In questions like this, the use of the power expansions series plays an important role. The expansion used in the above solution i.e. ${x^n} - 1 = \left( {x - 1} \right)\left( {{x^{n - 1}} + {x^{n - 2}} + ...... + {x^2} + x + 1} \right)$ is derived using the theorem, i.e. ${x^n} - {y^n} = \left( {x - y} \right)\left( {{x^{n - 1}} + {x^{n - 2}}y + {x^{n - 3}}{y^2} + ..... + x{y^{n - 2}} + {y^{n - 1}}} \right)$ where we put $y = 1$ .

Recently Updated Pages

The base of a right prism is a pentagon whose sides class 10 maths CBSE

A die is thrown Find the probability that the number class 10 maths CBSE

A mans age is six times the age of his son In six years class 10 maths CBSE

A started a business with Rs 21000 and is joined afterwards class 10 maths CBSE

Aasifbhai bought a refrigerator at Rs 10000 After some class 10 maths CBSE

Give a brief history of the mathematician Pythagoras class 10 maths CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Name 10 Living and Non living things class 9 biology CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Write the 6 fundamental rights of India and explain in detail