# If \[12{{\cot }^{2}}\theta -31\cos ec+32=0\], then value of \[\sin \theta \] is,

(a) \[\dfrac{3}{5}\]or 1

(b) \[\dfrac{2}{3}\]or \[\dfrac{-2}{3}\]

(c) \[\dfrac{4}{5}\]or \[\dfrac{3}{4}\]

(d) \[\pm \dfrac{1}{2}\]

Last updated date: 17th Mar 2023

•

Total views: 304.8k

•

Views today: 5.84k

Answer

Verified

304.8k+ views

Hint: Substitute the trigonometric formula for \[{{\cot }^{2}}\theta \]. The entire equation becomes in terms of \[\cos ec\theta \]. Solve the equation formed and find the roots. \[\sin \theta \] is the inverse of \[\cos ec\theta \]. Find the root and inverse it to get the value of \[\sin \theta \].

Complete step-by-step answer:

Given the expression, \[12{{\cot }^{2}}\theta -31\cos ec+32=0-(1)\]

We know the trigonometric expression,

\[\begin{align}

& \cos e{{c}^{2}}\theta -{{\cot }^{2}}\theta =1 \\

& \Rightarrow {{\cot }^{2}}\theta =\cos e{{c}^{2}}\theta -1 \\

\end{align}\]

Substitute the value of \[{{\cot }^{2}}\theta \]in equation (1),

\[\begin{align}

& 12{{\cot }^{2}}\theta -31\cos e{{c}^{2}}\theta +32=0 \\

& 12\left( \cos e{{c}^{2}}\theta -1 \right)-31\cos ec\theta +32=0 \\

\end{align}\]

Opening the bracket and simplifying it,

\[\begin{align}

& 12\cos e{{c}^{2}}\theta -12-31\cos ec\theta +32=0 \\

& 12\cos e{{c}^{2}}\theta -31\cos ec\theta +20=0-(2) \\

\end{align}\]

Now, equation (2) is in the form of a quadratic equation. We know a general quadratic equation is of the form \[a{{x}^{2}}+bx+c=0\]. Comparing both the general equation (1) and equation (2), we get,

\[a=12,b=-31,c=20\]

Now substitute these values in the quadratic form \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]to get the roots.

\[\begin{align}

& =\dfrac{-\left( -31 \right)\pm \sqrt{{{\left( -31 \right)}^{2}}-4\times 12\times 20}}{2\times 12} \\

& =\dfrac{31\pm \sqrt{961-960}}{24}=\dfrac{31\pm \sqrt{1}}{24} \\

& =\dfrac{31\pm 1}{24} \\

\end{align}\]

\[\therefore \]We get the roots as \[\left( \dfrac{31+1}{24} \right)\]and \[\left( \dfrac{31-1}{24} \right)\]\[=\dfrac{32}{24}\]and \[\dfrac{30}{24}\].

\[\therefore \]The roots are \[\dfrac{4}{3}\]and \[\dfrac{5}{4}\].

\[\therefore \]\[\cos ec\theta =\dfrac{4}{3}\]and \[\cos ec\theta =\dfrac{5}{4}\].

We know, \[\sin \theta =\dfrac{1}{\cos ec\theta }\]

\[\therefore \sin \theta =\dfrac{1}{\dfrac{4}{3}}\]or \[\dfrac{1}{\dfrac{5}{4}}\].

\[\sin \theta =\dfrac{3}{4}\]or \[\dfrac{4}{5}\].

Hence, option (c) is correct.

Note: We got the value of \[\sin \theta =\dfrac{3}{4}\]or \[\dfrac{4}{5}\].

Hence, we can find the value of \[\cos \theta \] and \[\tan \theta \].

\[\sin \theta \] = opposite side/ Hypotenuse.

By Pythagoras theorem,

\[A{{B}^{2}}+A{{C}^{2}}=B{{C}^{2}}\Rightarrow AB=\sqrt{B{{C}^{2}}-A{{C}^{2}}}=\sqrt{{{4}^{2}}-{{3}^{2}}}\]

\[AB=\sqrt{16-9}=\sqrt{7}\]

\[P{{Q}^{2}}+P{{R}^{2}}\Rightarrow PQ=\sqrt{Q{{R}^{2}}-R{{P}^{2}}}=\sqrt{{{5}^{2}}-{{4}^{2}}}\]

\[PQ=\sqrt{25-16}=3\]

\[\tan \theta \]= opposite side/ adjacent side \[=\dfrac{3}{\sqrt{7}}\]or \[\dfrac{4}{3}\].

\[\cos \theta \]= adjacent side/ hypotenuse\[=\dfrac{\sqrt{7}}{4}\]or \[\dfrac{3}{5}\].

Complete step-by-step answer:

Given the expression, \[12{{\cot }^{2}}\theta -31\cos ec+32=0-(1)\]

We know the trigonometric expression,

\[\begin{align}

& \cos e{{c}^{2}}\theta -{{\cot }^{2}}\theta =1 \\

& \Rightarrow {{\cot }^{2}}\theta =\cos e{{c}^{2}}\theta -1 \\

\end{align}\]

Substitute the value of \[{{\cot }^{2}}\theta \]in equation (1),

\[\begin{align}

& 12{{\cot }^{2}}\theta -31\cos e{{c}^{2}}\theta +32=0 \\

& 12\left( \cos e{{c}^{2}}\theta -1 \right)-31\cos ec\theta +32=0 \\

\end{align}\]

Opening the bracket and simplifying it,

\[\begin{align}

& 12\cos e{{c}^{2}}\theta -12-31\cos ec\theta +32=0 \\

& 12\cos e{{c}^{2}}\theta -31\cos ec\theta +20=0-(2) \\

\end{align}\]

Now, equation (2) is in the form of a quadratic equation. We know a general quadratic equation is of the form \[a{{x}^{2}}+bx+c=0\]. Comparing both the general equation (1) and equation (2), we get,

\[a=12,b=-31,c=20\]

Now substitute these values in the quadratic form \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]to get the roots.

\[\begin{align}

& =\dfrac{-\left( -31 \right)\pm \sqrt{{{\left( -31 \right)}^{2}}-4\times 12\times 20}}{2\times 12} \\

& =\dfrac{31\pm \sqrt{961-960}}{24}=\dfrac{31\pm \sqrt{1}}{24} \\

& =\dfrac{31\pm 1}{24} \\

\end{align}\]

\[\therefore \]We get the roots as \[\left( \dfrac{31+1}{24} \right)\]and \[\left( \dfrac{31-1}{24} \right)\]\[=\dfrac{32}{24}\]and \[\dfrac{30}{24}\].

\[\therefore \]The roots are \[\dfrac{4}{3}\]and \[\dfrac{5}{4}\].

\[\therefore \]\[\cos ec\theta =\dfrac{4}{3}\]and \[\cos ec\theta =\dfrac{5}{4}\].

We know, \[\sin \theta =\dfrac{1}{\cos ec\theta }\]

\[\therefore \sin \theta =\dfrac{1}{\dfrac{4}{3}}\]or \[\dfrac{1}{\dfrac{5}{4}}\].

\[\sin \theta =\dfrac{3}{4}\]or \[\dfrac{4}{5}\].

Hence, option (c) is correct.

Note: We got the value of \[\sin \theta =\dfrac{3}{4}\]or \[\dfrac{4}{5}\].

Hence, we can find the value of \[\cos \theta \] and \[\tan \theta \].

\[\sin \theta \] = opposite side/ Hypotenuse.

By Pythagoras theorem,

\[A{{B}^{2}}+A{{C}^{2}}=B{{C}^{2}}\Rightarrow AB=\sqrt{B{{C}^{2}}-A{{C}^{2}}}=\sqrt{{{4}^{2}}-{{3}^{2}}}\]

\[AB=\sqrt{16-9}=\sqrt{7}\]

\[P{{Q}^{2}}+P{{R}^{2}}\Rightarrow PQ=\sqrt{Q{{R}^{2}}-R{{P}^{2}}}=\sqrt{{{5}^{2}}-{{4}^{2}}}\]

\[PQ=\sqrt{25-16}=3\]

\[\tan \theta \]= opposite side/ adjacent side \[=\dfrac{3}{\sqrt{7}}\]or \[\dfrac{4}{3}\].

\[\cos \theta \]= adjacent side/ hypotenuse\[=\dfrac{\sqrt{7}}{4}\]or \[\dfrac{3}{5}\].

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE