
If \[12{{\cot }^{2}}\theta -31\cos ec+32=0\], then value of \[\sin \theta \] is,
(a) \[\dfrac{3}{5}\]or 1
(b) \[\dfrac{2}{3}\]or \[\dfrac{-2}{3}\]
(c) \[\dfrac{4}{5}\]or \[\dfrac{3}{4}\]
(d) \[\pm \dfrac{1}{2}\]
Answer
602.1k+ views
Hint: Substitute the trigonometric formula for \[{{\cot }^{2}}\theta \]. The entire equation becomes in terms of \[\cos ec\theta \]. Solve the equation formed and find the roots. \[\sin \theta \] is the inverse of \[\cos ec\theta \]. Find the root and inverse it to get the value of \[\sin \theta \].
Complete step-by-step answer:
Given the expression, \[12{{\cot }^{2}}\theta -31\cos ec+32=0-(1)\]
We know the trigonometric expression,
\[\begin{align}
& \cos e{{c}^{2}}\theta -{{\cot }^{2}}\theta =1 \\
& \Rightarrow {{\cot }^{2}}\theta =\cos e{{c}^{2}}\theta -1 \\
\end{align}\]
Substitute the value of \[{{\cot }^{2}}\theta \]in equation (1),
\[\begin{align}
& 12{{\cot }^{2}}\theta -31\cos e{{c}^{2}}\theta +32=0 \\
& 12\left( \cos e{{c}^{2}}\theta -1 \right)-31\cos ec\theta +32=0 \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& 12\cos e{{c}^{2}}\theta -12-31\cos ec\theta +32=0 \\
& 12\cos e{{c}^{2}}\theta -31\cos ec\theta +20=0-(2) \\
\end{align}\]
Now, equation (2) is in the form of a quadratic equation. We know a general quadratic equation is of the form \[a{{x}^{2}}+bx+c=0\]. Comparing both the general equation (1) and equation (2), we get,
\[a=12,b=-31,c=20\]
Now substitute these values in the quadratic form \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]to get the roots.
\[\begin{align}
& =\dfrac{-\left( -31 \right)\pm \sqrt{{{\left( -31 \right)}^{2}}-4\times 12\times 20}}{2\times 12} \\
& =\dfrac{31\pm \sqrt{961-960}}{24}=\dfrac{31\pm \sqrt{1}}{24} \\
& =\dfrac{31\pm 1}{24} \\
\end{align}\]
\[\therefore \]We get the roots as \[\left( \dfrac{31+1}{24} \right)\]and \[\left( \dfrac{31-1}{24} \right)\]\[=\dfrac{32}{24}\]and \[\dfrac{30}{24}\].
\[\therefore \]The roots are \[\dfrac{4}{3}\]and \[\dfrac{5}{4}\].
\[\therefore \]\[\cos ec\theta =\dfrac{4}{3}\]and \[\cos ec\theta =\dfrac{5}{4}\].
We know, \[\sin \theta =\dfrac{1}{\cos ec\theta }\]
\[\therefore \sin \theta =\dfrac{1}{\dfrac{4}{3}}\]or \[\dfrac{1}{\dfrac{5}{4}}\].
\[\sin \theta =\dfrac{3}{4}\]or \[\dfrac{4}{5}\].
Hence, option (c) is correct.
Note: We got the value of \[\sin \theta =\dfrac{3}{4}\]or \[\dfrac{4}{5}\].
Hence, we can find the value of \[\cos \theta \] and \[\tan \theta \].
\[\sin \theta \] = opposite side/ Hypotenuse.
By Pythagoras theorem,
\[A{{B}^{2}}+A{{C}^{2}}=B{{C}^{2}}\Rightarrow AB=\sqrt{B{{C}^{2}}-A{{C}^{2}}}=\sqrt{{{4}^{2}}-{{3}^{2}}}\]
\[AB=\sqrt{16-9}=\sqrt{7}\]
\[P{{Q}^{2}}+P{{R}^{2}}\Rightarrow PQ=\sqrt{Q{{R}^{2}}-R{{P}^{2}}}=\sqrt{{{5}^{2}}-{{4}^{2}}}\]
\[PQ=\sqrt{25-16}=3\]
\[\tan \theta \]= opposite side/ adjacent side \[=\dfrac{3}{\sqrt{7}}\]or \[\dfrac{4}{3}\].
\[\cos \theta \]= adjacent side/ hypotenuse\[=\dfrac{\sqrt{7}}{4}\]or \[\dfrac{3}{5}\].
Complete step-by-step answer:
Given the expression, \[12{{\cot }^{2}}\theta -31\cos ec+32=0-(1)\]
We know the trigonometric expression,
\[\begin{align}
& \cos e{{c}^{2}}\theta -{{\cot }^{2}}\theta =1 \\
& \Rightarrow {{\cot }^{2}}\theta =\cos e{{c}^{2}}\theta -1 \\
\end{align}\]
Substitute the value of \[{{\cot }^{2}}\theta \]in equation (1),
\[\begin{align}
& 12{{\cot }^{2}}\theta -31\cos e{{c}^{2}}\theta +32=0 \\
& 12\left( \cos e{{c}^{2}}\theta -1 \right)-31\cos ec\theta +32=0 \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& 12\cos e{{c}^{2}}\theta -12-31\cos ec\theta +32=0 \\
& 12\cos e{{c}^{2}}\theta -31\cos ec\theta +20=0-(2) \\
\end{align}\]
Now, equation (2) is in the form of a quadratic equation. We know a general quadratic equation is of the form \[a{{x}^{2}}+bx+c=0\]. Comparing both the general equation (1) and equation (2), we get,
\[a=12,b=-31,c=20\]
Now substitute these values in the quadratic form \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]to get the roots.
\[\begin{align}
& =\dfrac{-\left( -31 \right)\pm \sqrt{{{\left( -31 \right)}^{2}}-4\times 12\times 20}}{2\times 12} \\
& =\dfrac{31\pm \sqrt{961-960}}{24}=\dfrac{31\pm \sqrt{1}}{24} \\
& =\dfrac{31\pm 1}{24} \\
\end{align}\]
\[\therefore \]We get the roots as \[\left( \dfrac{31+1}{24} \right)\]and \[\left( \dfrac{31-1}{24} \right)\]\[=\dfrac{32}{24}\]and \[\dfrac{30}{24}\].
\[\therefore \]The roots are \[\dfrac{4}{3}\]and \[\dfrac{5}{4}\].
\[\therefore \]\[\cos ec\theta =\dfrac{4}{3}\]and \[\cos ec\theta =\dfrac{5}{4}\].
We know, \[\sin \theta =\dfrac{1}{\cos ec\theta }\]
\[\therefore \sin \theta =\dfrac{1}{\dfrac{4}{3}}\]or \[\dfrac{1}{\dfrac{5}{4}}\].
\[\sin \theta =\dfrac{3}{4}\]or \[\dfrac{4}{5}\].
Hence, option (c) is correct.
Note: We got the value of \[\sin \theta =\dfrac{3}{4}\]or \[\dfrac{4}{5}\].
Hence, we can find the value of \[\cos \theta \] and \[\tan \theta \].
\[\sin \theta \] = opposite side/ Hypotenuse.
By Pythagoras theorem,
\[A{{B}^{2}}+A{{C}^{2}}=B{{C}^{2}}\Rightarrow AB=\sqrt{B{{C}^{2}}-A{{C}^{2}}}=\sqrt{{{4}^{2}}-{{3}^{2}}}\]
\[AB=\sqrt{16-9}=\sqrt{7}\]
\[P{{Q}^{2}}+P{{R}^{2}}\Rightarrow PQ=\sqrt{Q{{R}^{2}}-R{{P}^{2}}}=\sqrt{{{5}^{2}}-{{4}^{2}}}\]
\[PQ=\sqrt{25-16}=3\]
\[\tan \theta \]= opposite side/ adjacent side \[=\dfrac{3}{\sqrt{7}}\]or \[\dfrac{4}{3}\].
\[\cos \theta \]= adjacent side/ hypotenuse\[=\dfrac{\sqrt{7}}{4}\]or \[\dfrac{3}{5}\].
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

