If \[12{{\cot }^{2}}\theta -31\cos ec+32=0\], then value of \[\sin \theta \] is,
(a) \[\dfrac{3}{5}\]or 1
(b) \[\dfrac{2}{3}\]or \[\dfrac{-2}{3}\]
(c) \[\dfrac{4}{5}\]or \[\dfrac{3}{4}\]
(d) \[\pm \dfrac{1}{2}\]
Answer
382.5k+ views
Hint: Substitute the trigonometric formula for \[{{\cot }^{2}}\theta \]. The entire equation becomes in terms of \[\cos ec\theta \]. Solve the equation formed and find the roots. \[\sin \theta \] is the inverse of \[\cos ec\theta \]. Find the root and inverse it to get the value of \[\sin \theta \].
Complete step-by-step answer:
Given the expression, \[12{{\cot }^{2}}\theta -31\cos ec+32=0-(1)\]
We know the trigonometric expression,
\[\begin{align}
& \cos e{{c}^{2}}\theta -{{\cot }^{2}}\theta =1 \\
& \Rightarrow {{\cot }^{2}}\theta =\cos e{{c}^{2}}\theta -1 \\
\end{align}\]
Substitute the value of \[{{\cot }^{2}}\theta \]in equation (1),
\[\begin{align}
& 12{{\cot }^{2}}\theta -31\cos e{{c}^{2}}\theta +32=0 \\
& 12\left( \cos e{{c}^{2}}\theta -1 \right)-31\cos ec\theta +32=0 \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& 12\cos e{{c}^{2}}\theta -12-31\cos ec\theta +32=0 \\
& 12\cos e{{c}^{2}}\theta -31\cos ec\theta +20=0-(2) \\
\end{align}\]
Now, equation (2) is in the form of a quadratic equation. We know a general quadratic equation is of the form \[a{{x}^{2}}+bx+c=0\]. Comparing both the general equation (1) and equation (2), we get,
\[a=12,b=-31,c=20\]
Now substitute these values in the quadratic form \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]to get the roots.
\[\begin{align}
& =\dfrac{-\left( -31 \right)\pm \sqrt{{{\left( -31 \right)}^{2}}-4\times 12\times 20}}{2\times 12} \\
& =\dfrac{31\pm \sqrt{961-960}}{24}=\dfrac{31\pm \sqrt{1}}{24} \\
& =\dfrac{31\pm 1}{24} \\
\end{align}\]
\[\therefore \]We get the roots as \[\left( \dfrac{31+1}{24} \right)\]and \[\left( \dfrac{31-1}{24} \right)\]\[=\dfrac{32}{24}\]and \[\dfrac{30}{24}\].
\[\therefore \]The roots are \[\dfrac{4}{3}\]and \[\dfrac{5}{4}\].
\[\therefore \]\[\cos ec\theta =\dfrac{4}{3}\]and \[\cos ec\theta =\dfrac{5}{4}\].
We know, \[\sin \theta =\dfrac{1}{\cos ec\theta }\]
\[\therefore \sin \theta =\dfrac{1}{\dfrac{4}{3}}\]or \[\dfrac{1}{\dfrac{5}{4}}\].
\[\sin \theta =\dfrac{3}{4}\]or \[\dfrac{4}{5}\].
Hence, option (c) is correct.
Note: We got the value of \[\sin \theta =\dfrac{3}{4}\]or \[\dfrac{4}{5}\].
Hence, we can find the value of \[\cos \theta \] and \[\tan \theta \].
\[\sin \theta \] = opposite side/ Hypotenuse.
By Pythagoras theorem,
\[A{{B}^{2}}+A{{C}^{2}}=B{{C}^{2}}\Rightarrow AB=\sqrt{B{{C}^{2}}-A{{C}^{2}}}=\sqrt{{{4}^{2}}-{{3}^{2}}}\]
\[AB=\sqrt{16-9}=\sqrt{7}\]
\[P{{Q}^{2}}+P{{R}^{2}}\Rightarrow PQ=\sqrt{Q{{R}^{2}}-R{{P}^{2}}}=\sqrt{{{5}^{2}}-{{4}^{2}}}\]
\[PQ=\sqrt{25-16}=3\]
\[\tan \theta \]= opposite side/ adjacent side \[=\dfrac{3}{\sqrt{7}}\]or \[\dfrac{4}{3}\].
\[\cos \theta \]= adjacent side/ hypotenuse\[=\dfrac{\sqrt{7}}{4}\]or \[\dfrac{3}{5}\].
Complete step-by-step answer:
Given the expression, \[12{{\cot }^{2}}\theta -31\cos ec+32=0-(1)\]
We know the trigonometric expression,
\[\begin{align}
& \cos e{{c}^{2}}\theta -{{\cot }^{2}}\theta =1 \\
& \Rightarrow {{\cot }^{2}}\theta =\cos e{{c}^{2}}\theta -1 \\
\end{align}\]
Substitute the value of \[{{\cot }^{2}}\theta \]in equation (1),
\[\begin{align}
& 12{{\cot }^{2}}\theta -31\cos e{{c}^{2}}\theta +32=0 \\
& 12\left( \cos e{{c}^{2}}\theta -1 \right)-31\cos ec\theta +32=0 \\
\end{align}\]
Opening the bracket and simplifying it,
\[\begin{align}
& 12\cos e{{c}^{2}}\theta -12-31\cos ec\theta +32=0 \\
& 12\cos e{{c}^{2}}\theta -31\cos ec\theta +20=0-(2) \\
\end{align}\]
Now, equation (2) is in the form of a quadratic equation. We know a general quadratic equation is of the form \[a{{x}^{2}}+bx+c=0\]. Comparing both the general equation (1) and equation (2), we get,
\[a=12,b=-31,c=20\]
Now substitute these values in the quadratic form \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]to get the roots.
\[\begin{align}
& =\dfrac{-\left( -31 \right)\pm \sqrt{{{\left( -31 \right)}^{2}}-4\times 12\times 20}}{2\times 12} \\
& =\dfrac{31\pm \sqrt{961-960}}{24}=\dfrac{31\pm \sqrt{1}}{24} \\
& =\dfrac{31\pm 1}{24} \\
\end{align}\]
\[\therefore \]We get the roots as \[\left( \dfrac{31+1}{24} \right)\]and \[\left( \dfrac{31-1}{24} \right)\]\[=\dfrac{32}{24}\]and \[\dfrac{30}{24}\].
\[\therefore \]The roots are \[\dfrac{4}{3}\]and \[\dfrac{5}{4}\].
\[\therefore \]\[\cos ec\theta =\dfrac{4}{3}\]and \[\cos ec\theta =\dfrac{5}{4}\].
We know, \[\sin \theta =\dfrac{1}{\cos ec\theta }\]
\[\therefore \sin \theta =\dfrac{1}{\dfrac{4}{3}}\]or \[\dfrac{1}{\dfrac{5}{4}}\].
\[\sin \theta =\dfrac{3}{4}\]or \[\dfrac{4}{5}\].
Hence, option (c) is correct.
Note: We got the value of \[\sin \theta =\dfrac{3}{4}\]or \[\dfrac{4}{5}\].
Hence, we can find the value of \[\cos \theta \] and \[\tan \theta \].
\[\sin \theta \] = opposite side/ Hypotenuse.
By Pythagoras theorem,

\[A{{B}^{2}}+A{{C}^{2}}=B{{C}^{2}}\Rightarrow AB=\sqrt{B{{C}^{2}}-A{{C}^{2}}}=\sqrt{{{4}^{2}}-{{3}^{2}}}\]
\[AB=\sqrt{16-9}=\sqrt{7}\]
\[P{{Q}^{2}}+P{{R}^{2}}\Rightarrow PQ=\sqrt{Q{{R}^{2}}-R{{P}^{2}}}=\sqrt{{{5}^{2}}-{{4}^{2}}}\]
\[PQ=\sqrt{25-16}=3\]
\[\tan \theta \]= opposite side/ adjacent side \[=\dfrac{3}{\sqrt{7}}\]or \[\dfrac{4}{3}\].
\[\cos \theta \]= adjacent side/ hypotenuse\[=\dfrac{\sqrt{7}}{4}\]or \[\dfrac{3}{5}\].
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the past tense of read class 10 english CBSE

What is pollution? How many types of pollution? Define it

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

How many crores make 10 million class 7 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE
