
If $10$ times the ${10^{th}}$term of an A.P. is equal to $15$ times the ${15^{th}}$ term, show that the ${25^{th}}$term of A.P. is zero.
Answer
621k+ views
Hint: Use general term of A.P. i.e, ${T_n} = a + (n - 1)d$.
We, know that the ${n^{th}}$term of an A.P. is given as:
${T_n} = a + (n - 1)d$
$\therefore {10^{th}}$term of A.P. will be:
$
\Rightarrow {T_{10}} = a + (10 - 1)d \\
\Rightarrow {T_{10}} = a + 9d \\
$
Similarly, ${15^{th}}$term will be:
$
\Rightarrow {T_{15}} = a + (15 - 1)d, \\
\Rightarrow {T_{15}} = a + 14d \\
$
Now, according to question:
$10{T_{10}} = 15{T_{15}}$
So, putting values of ${T_{10}}$and ${T_{15}}$from above, we’ll get:
$
\Rightarrow 10(a + 9d) = 15(a + 14d) \\
\Rightarrow 10a + 90d = 15a + 210d \\
\Rightarrow 5a + 120d = 0 \\
\Rightarrow a + 24d = 0 \\
$
And ${25^{th}}$term of A.P. will be:
$
\Rightarrow {T_{25}} = a + (25 - 1)d \\
\Rightarrow {T_{25}} = a + 24d \\
$
Putting the value $a + 24d = 0$ from above, we get:
$ \Rightarrow {T_{25}} = 0.$
Hence the ${25^{th}}$term of A.P. is zero.
Note: Since ${25^{th}}$ term of A.P. is zero, we can conclude that the sum of the first 49 terms of this A.P. is zero. In that case, the sum of the first 24 terms will be negative of the sum of the last 24 terms and ${25^{th}}$ term is already zero.
We, know that the ${n^{th}}$term of an A.P. is given as:
${T_n} = a + (n - 1)d$
$\therefore {10^{th}}$term of A.P. will be:
$
\Rightarrow {T_{10}} = a + (10 - 1)d \\
\Rightarrow {T_{10}} = a + 9d \\
$
Similarly, ${15^{th}}$term will be:
$
\Rightarrow {T_{15}} = a + (15 - 1)d, \\
\Rightarrow {T_{15}} = a + 14d \\
$
Now, according to question:
$10{T_{10}} = 15{T_{15}}$
So, putting values of ${T_{10}}$and ${T_{15}}$from above, we’ll get:
$
\Rightarrow 10(a + 9d) = 15(a + 14d) \\
\Rightarrow 10a + 90d = 15a + 210d \\
\Rightarrow 5a + 120d = 0 \\
\Rightarrow a + 24d = 0 \\
$
And ${25^{th}}$term of A.P. will be:
$
\Rightarrow {T_{25}} = a + (25 - 1)d \\
\Rightarrow {T_{25}} = a + 24d \\
$
Putting the value $a + 24d = 0$ from above, we get:
$ \Rightarrow {T_{25}} = 0.$
Hence the ${25^{th}}$term of A.P. is zero.
Note: Since ${25^{th}}$ term of A.P. is zero, we can conclude that the sum of the first 49 terms of this A.P. is zero. In that case, the sum of the first 24 terms will be negative of the sum of the last 24 terms and ${25^{th}}$ term is already zero.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

