
If $10$ times the ${10^{th}}$term of an A.P. is equal to $15$ times the ${15^{th}}$ term, show that the ${25^{th}}$term of A.P. is zero.
Answer
614.4k+ views
Hint: Use general term of A.P. i.e, ${T_n} = a + (n - 1)d$.
We, know that the ${n^{th}}$term of an A.P. is given as:
${T_n} = a + (n - 1)d$
$\therefore {10^{th}}$term of A.P. will be:
$
\Rightarrow {T_{10}} = a + (10 - 1)d \\
\Rightarrow {T_{10}} = a + 9d \\
$
Similarly, ${15^{th}}$term will be:
$
\Rightarrow {T_{15}} = a + (15 - 1)d, \\
\Rightarrow {T_{15}} = a + 14d \\
$
Now, according to question:
$10{T_{10}} = 15{T_{15}}$
So, putting values of ${T_{10}}$and ${T_{15}}$from above, we’ll get:
$
\Rightarrow 10(a + 9d) = 15(a + 14d) \\
\Rightarrow 10a + 90d = 15a + 210d \\
\Rightarrow 5a + 120d = 0 \\
\Rightarrow a + 24d = 0 \\
$
And ${25^{th}}$term of A.P. will be:
$
\Rightarrow {T_{25}} = a + (25 - 1)d \\
\Rightarrow {T_{25}} = a + 24d \\
$
Putting the value $a + 24d = 0$ from above, we get:
$ \Rightarrow {T_{25}} = 0.$
Hence the ${25^{th}}$term of A.P. is zero.
Note: Since ${25^{th}}$ term of A.P. is zero, we can conclude that the sum of the first 49 terms of this A.P. is zero. In that case, the sum of the first 24 terms will be negative of the sum of the last 24 terms and ${25^{th}}$ term is already zero.
We, know that the ${n^{th}}$term of an A.P. is given as:
${T_n} = a + (n - 1)d$
$\therefore {10^{th}}$term of A.P. will be:
$
\Rightarrow {T_{10}} = a + (10 - 1)d \\
\Rightarrow {T_{10}} = a + 9d \\
$
Similarly, ${15^{th}}$term will be:
$
\Rightarrow {T_{15}} = a + (15 - 1)d, \\
\Rightarrow {T_{15}} = a + 14d \\
$
Now, according to question:
$10{T_{10}} = 15{T_{15}}$
So, putting values of ${T_{10}}$and ${T_{15}}$from above, we’ll get:
$
\Rightarrow 10(a + 9d) = 15(a + 14d) \\
\Rightarrow 10a + 90d = 15a + 210d \\
\Rightarrow 5a + 120d = 0 \\
\Rightarrow a + 24d = 0 \\
$
And ${25^{th}}$term of A.P. will be:
$
\Rightarrow {T_{25}} = a + (25 - 1)d \\
\Rightarrow {T_{25}} = a + 24d \\
$
Putting the value $a + 24d = 0$ from above, we get:
$ \Rightarrow {T_{25}} = 0.$
Hence the ${25^{th}}$term of A.P. is zero.
Note: Since ${25^{th}}$ term of A.P. is zero, we can conclude that the sum of the first 49 terms of this A.P. is zero. In that case, the sum of the first 24 terms will be negative of the sum of the last 24 terms and ${25^{th}}$ term is already zero.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

