 Questions & Answers    Question Answers

# If $10$ times the ${10^{th}}$term of an A.P. is equal to $15$ times the ${15^{th}}$ term, show that the ${25^{th}}$term of A.P. is zero.  Answer Verified
Hint: Use general term of A.P. i.e, ${T_n} = a + (n - 1)d$.
We, know that the ${n^{th}}$term of an A.P. is given as:
${T_n} = a + (n - 1)d$
$\therefore {10^{th}}$term of A.P. will be:
$\Rightarrow {T_{10}} = a + (10 - 1)d \\ \Rightarrow {T_{10}} = a + 9d \\$
Similarly, ${15^{th}}$term will be:
$\Rightarrow {T_{15}} = a + (15 - 1)d, \\ \Rightarrow {T_{15}} = a + 14d \\$
Now, according to question:
$10{T_{10}} = 15{T_{15}}$
So, putting values of ${T_{10}}$and ${T_{15}}$from above, we’ll get:
$\Rightarrow 10(a + 9d) = 15(a + 14d) \\ \Rightarrow 10a + 90d = 15a + 210d \\ \Rightarrow 5a + 120d = 0 \\ \Rightarrow a + 24d = 0 \\$
And ${25^{th}}$term of A.P. will be:
$\Rightarrow {T_{25}} = a + (25 - 1)d \\ \Rightarrow {T_{25}} = a + 24d \\$
Putting the value $a + 24d = 0$ from above, we get:
$\Rightarrow {T_{25}} = 0.$
Hence the ${25^{th}}$term of A.P. is zero.
Note: Since ${25^{th}}$ term of A.P. is zero, we can conclude that the sum of the first 49 terms of this A.P. is zero. In that case, the sum of the first 24 terms will be negative of the sum of the last 24 terms and ${25^{th}}$ term is already zero.
Bookmark added to your notes.
View Notes
SUM OF N TERMS  An Overview of the Types of Computer  Charge to Mass Ratio of an Electron  An Introduction to Effects of Climate Changes  What is an Integer  What is an Alloy  To Measure the Volume of an Irregular Lamina Using Screw Gauge  Calculating the Value of an Electric Field  Geometric Progression Sum of GP  Multiples of 15  