
If 1, \[\omega \], \[{\omega ^2}\] are cube the roots of unity, then find the values of the following.
i)\[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3}\]
ii)\[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2}\]
Answer
456.3k+ views
Hint: Here, we are required to find the values of the above parts when it is given that 1, \[\omega \], \[{\omega ^2}\] are cube the roots of unity. We know that the sum of three cube roots of unity is 0. We will expand the given expressions and take the like terms common and finally, substituting the fact that \[1 + \omega + {\omega ^2} = 0\], will help us reach the required answer.
Formula Used:
We will use the following formulas:
1.\[{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\]
2.\[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]
3.\[1 + \omega + {\omega ^2} = 0\]
Complete step-by-step answer:
According to the question, if 1, \[\omega \], \[{\omega ^2}\] are cube the roots of unity.
As sum of three cube roots of unity is 0, so \[1 + \omega + {\omega ^2} = 0\]
\[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3}\]
Now, using the formula \[{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\], we get
Let \[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3} = S\]
\[S = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} + {a^3} + 3{a^2}b\omega + 3a{b^2}{\omega ^2} + {b^3} + {a^3} + 3{a^2}b{\omega ^2} + 3a{b^2}\omega + {b^3}\]
Taking the like terms common, we get,
\[ \Rightarrow S = 3{a^3} + 3{a^2}b\left( {1 + \omega + {\omega ^2}} \right) + 3a{b^2}\left( {1 + \omega + {\omega ^2}} \right) + 3{b^3}\]
But,\[1 + \omega + {\omega ^2} = 0\], therefore
\[ \Rightarrow S = 3{a^3} + 3{a^2}b\left( 0 \right) + 3a{b^2}\left( 0 \right) + 3{b^3}\]
\[ \Rightarrow S = 3{a^3} + 3{b^3} = 3\left( {{a^3} + {b^3}} \right)\]
Hence, the value of \[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3} = 3\left( {{a^3} + {b^3}} \right)\]
\[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2}\]
Let \[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2} = T\]
Using the formula \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\], we get
\[ \Rightarrow T = = {a^2} + 4ab + 4{b^2} + {a^2}\omega + 4ab + 4{b^2}{\omega ^2} + {a^2}{\omega ^2} + 4ab + 4{b^2}\omega \]
Taking the like terms common, we get,
\[ \Rightarrow T = {a^2}\left( {1 + \omega + {\omega ^2}} \right) + 12ab + 4{b^2}\left( {1 + \omega + {\omega ^2}} \right)\]
But, \[1 + \omega + {\omega ^2} = 0\], hence,
\[ \Rightarrow T = {a^2}\left( 0 \right) + 12ab + 4{b^2}\left( 0 \right)\]
\[ \Rightarrow T = 12ab\]
Hence, the value of \[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2} = 12ab\]
Note: In this question we have assumed that \[1 + \omega + {\omega ^2} = 0\]. We can prove this equation as shown below.
Let us assume the cube root of unity or 1 as:
\[\sqrt[3]{1} = z\]
Cubing both sides, we get
\[ \Rightarrow 1 = {z^3}\]
Or
\[ \Rightarrow {z^3} - 1 = 0\]
Now, using the formula \[\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\], we get
\[ \Rightarrow \left( {z - 1} \right)\left( {{z^2} + z + 1} \right) = 0\]
Therefore, either \[\left( {z - 1} \right) = 0\]
\[ \Rightarrow z = 1\]
Or, \[\left( {{z^2} + z + 1} \right) = 0\]
Comparing with \[\left( {a{x^2} + bx + c} \right) = 0\]
Here, \[a = 1\], \[b = 1\]and \[c = 1\]
Now, Determinant, \[D = {b^2} - 4ac\]
Hence, for \[\left( {{z^2} + z + 1} \right) = 0\],
\[D = {\left( 1 \right)^2} - 4 \times 1 = 1 - 4 = - 3\]
Now, , Using quadratic formula,
\[z = \dfrac{{ - b \pm \sqrt D }}{{2a}}\]
Here, \[a = 1\], \[b = 1\]and \[c = 1\] and \[D = - 3\]
\[ \Rightarrow z = \dfrac{{ - 1 \pm \sqrt { - 3} }}{2}\]
This can be written as:
\[ \Rightarrow z = \dfrac{{ - 1 \pm \sqrt 3 i}}{2}\]
Therefore, the three cube roots of unity are:
\[1\], \[\dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2}\] and \[\dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2}\]
Now, according to the property, the sum of these three cube roots of unity will be equal to 0.
We know that,
\[1 + \omega + {\omega ^2} = 0\]
Here, \[\omega \] represents the imaginary cube roots.
\[ \Rightarrow 1 + \dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2} + \dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2} = 1 - 1 + 0 = 0\]
Hence, proved.
Formula Used:
We will use the following formulas:
1.\[{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\]
2.\[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]
3.\[1 + \omega + {\omega ^2} = 0\]
Complete step-by-step answer:
According to the question, if 1, \[\omega \], \[{\omega ^2}\] are cube the roots of unity.
As sum of three cube roots of unity is 0, so \[1 + \omega + {\omega ^2} = 0\]
\[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3}\]
Now, using the formula \[{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\], we get
Let \[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3} = S\]
\[S = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} + {a^3} + 3{a^2}b\omega + 3a{b^2}{\omega ^2} + {b^3} + {a^3} + 3{a^2}b{\omega ^2} + 3a{b^2}\omega + {b^3}\]
Taking the like terms common, we get,
\[ \Rightarrow S = 3{a^3} + 3{a^2}b\left( {1 + \omega + {\omega ^2}} \right) + 3a{b^2}\left( {1 + \omega + {\omega ^2}} \right) + 3{b^3}\]
But,\[1 + \omega + {\omega ^2} = 0\], therefore
\[ \Rightarrow S = 3{a^3} + 3{a^2}b\left( 0 \right) + 3a{b^2}\left( 0 \right) + 3{b^3}\]
\[ \Rightarrow S = 3{a^3} + 3{b^3} = 3\left( {{a^3} + {b^3}} \right)\]
Hence, the value of \[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3} = 3\left( {{a^3} + {b^3}} \right)\]
\[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2}\]
Let \[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2} = T\]
Using the formula \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\], we get
\[ \Rightarrow T = = {a^2} + 4ab + 4{b^2} + {a^2}\omega + 4ab + 4{b^2}{\omega ^2} + {a^2}{\omega ^2} + 4ab + 4{b^2}\omega \]
Taking the like terms common, we get,
\[ \Rightarrow T = {a^2}\left( {1 + \omega + {\omega ^2}} \right) + 12ab + 4{b^2}\left( {1 + \omega + {\omega ^2}} \right)\]
But, \[1 + \omega + {\omega ^2} = 0\], hence,
\[ \Rightarrow T = {a^2}\left( 0 \right) + 12ab + 4{b^2}\left( 0 \right)\]
\[ \Rightarrow T = 12ab\]
Hence, the value of \[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2} = 12ab\]
Note: In this question we have assumed that \[1 + \omega + {\omega ^2} = 0\]. We can prove this equation as shown below.
Let us assume the cube root of unity or 1 as:
\[\sqrt[3]{1} = z\]
Cubing both sides, we get
\[ \Rightarrow 1 = {z^3}\]
Or
\[ \Rightarrow {z^3} - 1 = 0\]
Now, using the formula \[\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\], we get
\[ \Rightarrow \left( {z - 1} \right)\left( {{z^2} + z + 1} \right) = 0\]
Therefore, either \[\left( {z - 1} \right) = 0\]
\[ \Rightarrow z = 1\]
Or, \[\left( {{z^2} + z + 1} \right) = 0\]
Comparing with \[\left( {a{x^2} + bx + c} \right) = 0\]
Here, \[a = 1\], \[b = 1\]and \[c = 1\]
Now, Determinant, \[D = {b^2} - 4ac\]
Hence, for \[\left( {{z^2} + z + 1} \right) = 0\],
\[D = {\left( 1 \right)^2} - 4 \times 1 = 1 - 4 = - 3\]
Now, , Using quadratic formula,
\[z = \dfrac{{ - b \pm \sqrt D }}{{2a}}\]
Here, \[a = 1\], \[b = 1\]and \[c = 1\] and \[D = - 3\]
\[ \Rightarrow z = \dfrac{{ - 1 \pm \sqrt { - 3} }}{2}\]
This can be written as:
\[ \Rightarrow z = \dfrac{{ - 1 \pm \sqrt 3 i}}{2}\]
Therefore, the three cube roots of unity are:
\[1\], \[\dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2}\] and \[\dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2}\]
Now, according to the property, the sum of these three cube roots of unity will be equal to 0.
We know that,
\[1 + \omega + {\omega ^2} = 0\]
Here, \[\omega \] represents the imaginary cube roots.
\[ \Rightarrow 1 + \dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2} + \dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2} = 1 - 1 + 0 = 0\]
Hence, proved.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

The correct order of melting point of 14th group elements class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE
