Answer
Verified
420.9k+ views
Hint: Here, we are required to find the values of the above parts when it is given that 1, \[\omega \], \[{\omega ^2}\] are cube the roots of unity. We know that the sum of three cube roots of unity is 0. We will expand the given expressions and take the like terms common and finally, substituting the fact that \[1 + \omega + {\omega ^2} = 0\], will help us reach the required answer.
Formula Used:
We will use the following formulas:
1.\[{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\]
2.\[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]
3.\[1 + \omega + {\omega ^2} = 0\]
Complete step-by-step answer:
According to the question, if 1, \[\omega \], \[{\omega ^2}\] are cube the roots of unity.
As sum of three cube roots of unity is 0, so \[1 + \omega + {\omega ^2} = 0\]
\[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3}\]
Now, using the formula \[{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\], we get
Let \[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3} = S\]
\[S = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} + {a^3} + 3{a^2}b\omega + 3a{b^2}{\omega ^2} + {b^3} + {a^3} + 3{a^2}b{\omega ^2} + 3a{b^2}\omega + {b^3}\]
Taking the like terms common, we get,
\[ \Rightarrow S = 3{a^3} + 3{a^2}b\left( {1 + \omega + {\omega ^2}} \right) + 3a{b^2}\left( {1 + \omega + {\omega ^2}} \right) + 3{b^3}\]
But,\[1 + \omega + {\omega ^2} = 0\], therefore
\[ \Rightarrow S = 3{a^3} + 3{a^2}b\left( 0 \right) + 3a{b^2}\left( 0 \right) + 3{b^3}\]
\[ \Rightarrow S = 3{a^3} + 3{b^3} = 3\left( {{a^3} + {b^3}} \right)\]
Hence, the value of \[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3} = 3\left( {{a^3} + {b^3}} \right)\]
\[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2}\]
Let \[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2} = T\]
Using the formula \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\], we get
\[ \Rightarrow T = = {a^2} + 4ab + 4{b^2} + {a^2}\omega + 4ab + 4{b^2}{\omega ^2} + {a^2}{\omega ^2} + 4ab + 4{b^2}\omega \]
Taking the like terms common, we get,
\[ \Rightarrow T = {a^2}\left( {1 + \omega + {\omega ^2}} \right) + 12ab + 4{b^2}\left( {1 + \omega + {\omega ^2}} \right)\]
But, \[1 + \omega + {\omega ^2} = 0\], hence,
\[ \Rightarrow T = {a^2}\left( 0 \right) + 12ab + 4{b^2}\left( 0 \right)\]
\[ \Rightarrow T = 12ab\]
Hence, the value of \[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2} = 12ab\]
Note: In this question we have assumed that \[1 + \omega + {\omega ^2} = 0\]. We can prove this equation as shown below.
Let us assume the cube root of unity or 1 as:
\[\sqrt[3]{1} = z\]
Cubing both sides, we get
\[ \Rightarrow 1 = {z^3}\]
Or
\[ \Rightarrow {z^3} - 1 = 0\]
Now, using the formula \[\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\], we get
\[ \Rightarrow \left( {z - 1} \right)\left( {{z^2} + z + 1} \right) = 0\]
Therefore, either \[\left( {z - 1} \right) = 0\]
\[ \Rightarrow z = 1\]
Or, \[\left( {{z^2} + z + 1} \right) = 0\]
Comparing with \[\left( {a{x^2} + bx + c} \right) = 0\]
Here, \[a = 1\], \[b = 1\]and \[c = 1\]
Now, Determinant, \[D = {b^2} - 4ac\]
Hence, for \[\left( {{z^2} + z + 1} \right) = 0\],
\[D = {\left( 1 \right)^2} - 4 \times 1 = 1 - 4 = - 3\]
Now, , Using quadratic formula,
\[z = \dfrac{{ - b \pm \sqrt D }}{{2a}}\]
Here, \[a = 1\], \[b = 1\]and \[c = 1\] and \[D = - 3\]
\[ \Rightarrow z = \dfrac{{ - 1 \pm \sqrt { - 3} }}{2}\]
This can be written as:
\[ \Rightarrow z = \dfrac{{ - 1 \pm \sqrt 3 i}}{2}\]
Therefore, the three cube roots of unity are:
\[1\], \[\dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2}\] and \[\dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2}\]
Now, according to the property, the sum of these three cube roots of unity will be equal to 0.
We know that,
\[1 + \omega + {\omega ^2} = 0\]
Here, \[\omega \] represents the imaginary cube roots.
\[ \Rightarrow 1 + \dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2} + \dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2} = 1 - 1 + 0 = 0\]
Hence, proved.
Formula Used:
We will use the following formulas:
1.\[{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\]
2.\[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]
3.\[1 + \omega + {\omega ^2} = 0\]
Complete step-by-step answer:
According to the question, if 1, \[\omega \], \[{\omega ^2}\] are cube the roots of unity.
As sum of three cube roots of unity is 0, so \[1 + \omega + {\omega ^2} = 0\]
\[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3}\]
Now, using the formula \[{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\], we get
Let \[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3} = S\]
\[S = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} + {a^3} + 3{a^2}b\omega + 3a{b^2}{\omega ^2} + {b^3} + {a^3} + 3{a^2}b{\omega ^2} + 3a{b^2}\omega + {b^3}\]
Taking the like terms common, we get,
\[ \Rightarrow S = 3{a^3} + 3{a^2}b\left( {1 + \omega + {\omega ^2}} \right) + 3a{b^2}\left( {1 + \omega + {\omega ^2}} \right) + 3{b^3}\]
But,\[1 + \omega + {\omega ^2} = 0\], therefore
\[ \Rightarrow S = 3{a^3} + 3{a^2}b\left( 0 \right) + 3a{b^2}\left( 0 \right) + 3{b^3}\]
\[ \Rightarrow S = 3{a^3} + 3{b^3} = 3\left( {{a^3} + {b^3}} \right)\]
Hence, the value of \[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3} = 3\left( {{a^3} + {b^3}} \right)\]
\[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2}\]
Let \[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2} = T\]
Using the formula \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\], we get
\[ \Rightarrow T = = {a^2} + 4ab + 4{b^2} + {a^2}\omega + 4ab + 4{b^2}{\omega ^2} + {a^2}{\omega ^2} + 4ab + 4{b^2}\omega \]
Taking the like terms common, we get,
\[ \Rightarrow T = {a^2}\left( {1 + \omega + {\omega ^2}} \right) + 12ab + 4{b^2}\left( {1 + \omega + {\omega ^2}} \right)\]
But, \[1 + \omega + {\omega ^2} = 0\], hence,
\[ \Rightarrow T = {a^2}\left( 0 \right) + 12ab + 4{b^2}\left( 0 \right)\]
\[ \Rightarrow T = 12ab\]
Hence, the value of \[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2} = 12ab\]
Note: In this question we have assumed that \[1 + \omega + {\omega ^2} = 0\]. We can prove this equation as shown below.
Let us assume the cube root of unity or 1 as:
\[\sqrt[3]{1} = z\]
Cubing both sides, we get
\[ \Rightarrow 1 = {z^3}\]
Or
\[ \Rightarrow {z^3} - 1 = 0\]
Now, using the formula \[\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\], we get
\[ \Rightarrow \left( {z - 1} \right)\left( {{z^2} + z + 1} \right) = 0\]
Therefore, either \[\left( {z - 1} \right) = 0\]
\[ \Rightarrow z = 1\]
Or, \[\left( {{z^2} + z + 1} \right) = 0\]
Comparing with \[\left( {a{x^2} + bx + c} \right) = 0\]
Here, \[a = 1\], \[b = 1\]and \[c = 1\]
Now, Determinant, \[D = {b^2} - 4ac\]
Hence, for \[\left( {{z^2} + z + 1} \right) = 0\],
\[D = {\left( 1 \right)^2} - 4 \times 1 = 1 - 4 = - 3\]
Now, , Using quadratic formula,
\[z = \dfrac{{ - b \pm \sqrt D }}{{2a}}\]
Here, \[a = 1\], \[b = 1\]and \[c = 1\] and \[D = - 3\]
\[ \Rightarrow z = \dfrac{{ - 1 \pm \sqrt { - 3} }}{2}\]
This can be written as:
\[ \Rightarrow z = \dfrac{{ - 1 \pm \sqrt 3 i}}{2}\]
Therefore, the three cube roots of unity are:
\[1\], \[\dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2}\] and \[\dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2}\]
Now, according to the property, the sum of these three cube roots of unity will be equal to 0.
We know that,
\[1 + \omega + {\omega ^2} = 0\]
Here, \[\omega \] represents the imaginary cube roots.
\[ \Rightarrow 1 + \dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2} + \dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2} = 1 - 1 + 0 = 0\]
Hence, proved.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths