
If 1, \[\omega \], \[{\omega ^2}\] are cube the roots of unity, then find the values of the following.
i)\[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3}\]
ii)\[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2}\]
Answer
550.2k+ views
Hint: Here, we are required to find the values of the above parts when it is given that 1, \[\omega \], \[{\omega ^2}\] are cube the roots of unity. We know that the sum of three cube roots of unity is 0. We will expand the given expressions and take the like terms common and finally, substituting the fact that \[1 + \omega + {\omega ^2} = 0\], will help us reach the required answer.
Formula Used:
We will use the following formulas:
1.\[{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\]
2.\[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]
3.\[1 + \omega + {\omega ^2} = 0\]
Complete step-by-step answer:
According to the question, if 1, \[\omega \], \[{\omega ^2}\] are cube the roots of unity.
As sum of three cube roots of unity is 0, so \[1 + \omega + {\omega ^2} = 0\]
\[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3}\]
Now, using the formula \[{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\], we get
Let \[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3} = S\]
\[S = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} + {a^3} + 3{a^2}b\omega + 3a{b^2}{\omega ^2} + {b^3} + {a^3} + 3{a^2}b{\omega ^2} + 3a{b^2}\omega + {b^3}\]
Taking the like terms common, we get,
\[ \Rightarrow S = 3{a^3} + 3{a^2}b\left( {1 + \omega + {\omega ^2}} \right) + 3a{b^2}\left( {1 + \omega + {\omega ^2}} \right) + 3{b^3}\]
But,\[1 + \omega + {\omega ^2} = 0\], therefore
\[ \Rightarrow S = 3{a^3} + 3{a^2}b\left( 0 \right) + 3a{b^2}\left( 0 \right) + 3{b^3}\]
\[ \Rightarrow S = 3{a^3} + 3{b^3} = 3\left( {{a^3} + {b^3}} \right)\]
Hence, the value of \[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3} = 3\left( {{a^3} + {b^3}} \right)\]
\[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2}\]
Let \[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2} = T\]
Using the formula \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\], we get
\[ \Rightarrow T = = {a^2} + 4ab + 4{b^2} + {a^2}\omega + 4ab + 4{b^2}{\omega ^2} + {a^2}{\omega ^2} + 4ab + 4{b^2}\omega \]
Taking the like terms common, we get,
\[ \Rightarrow T = {a^2}\left( {1 + \omega + {\omega ^2}} \right) + 12ab + 4{b^2}\left( {1 + \omega + {\omega ^2}} \right)\]
But, \[1 + \omega + {\omega ^2} = 0\], hence,
\[ \Rightarrow T = {a^2}\left( 0 \right) + 12ab + 4{b^2}\left( 0 \right)\]
\[ \Rightarrow T = 12ab\]
Hence, the value of \[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2} = 12ab\]
Note: In this question we have assumed that \[1 + \omega + {\omega ^2} = 0\]. We can prove this equation as shown below.
Let us assume the cube root of unity or 1 as:
\[\sqrt[3]{1} = z\]
Cubing both sides, we get
\[ \Rightarrow 1 = {z^3}\]
Or
\[ \Rightarrow {z^3} - 1 = 0\]
Now, using the formula \[\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\], we get
\[ \Rightarrow \left( {z - 1} \right)\left( {{z^2} + z + 1} \right) = 0\]
Therefore, either \[\left( {z - 1} \right) = 0\]
\[ \Rightarrow z = 1\]
Or, \[\left( {{z^2} + z + 1} \right) = 0\]
Comparing with \[\left( {a{x^2} + bx + c} \right) = 0\]
Here, \[a = 1\], \[b = 1\]and \[c = 1\]
Now, Determinant, \[D = {b^2} - 4ac\]
Hence, for \[\left( {{z^2} + z + 1} \right) = 0\],
\[D = {\left( 1 \right)^2} - 4 \times 1 = 1 - 4 = - 3\]
Now, , Using quadratic formula,
\[z = \dfrac{{ - b \pm \sqrt D }}{{2a}}\]
Here, \[a = 1\], \[b = 1\]and \[c = 1\] and \[D = - 3\]
\[ \Rightarrow z = \dfrac{{ - 1 \pm \sqrt { - 3} }}{2}\]
This can be written as:
\[ \Rightarrow z = \dfrac{{ - 1 \pm \sqrt 3 i}}{2}\]
Therefore, the three cube roots of unity are:
\[1\], \[\dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2}\] and \[\dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2}\]
Now, according to the property, the sum of these three cube roots of unity will be equal to 0.
We know that,
\[1 + \omega + {\omega ^2} = 0\]
Here, \[\omega \] represents the imaginary cube roots.
\[ \Rightarrow 1 + \dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2} + \dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2} = 1 - 1 + 0 = 0\]
Hence, proved.
Formula Used:
We will use the following formulas:
1.\[{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\]
2.\[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]
3.\[1 + \omega + {\omega ^2} = 0\]
Complete step-by-step answer:
According to the question, if 1, \[\omega \], \[{\omega ^2}\] are cube the roots of unity.
As sum of three cube roots of unity is 0, so \[1 + \omega + {\omega ^2} = 0\]
\[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3}\]
Now, using the formula \[{\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\], we get
Let \[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3} = S\]
\[S = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} + {a^3} + 3{a^2}b\omega + 3a{b^2}{\omega ^2} + {b^3} + {a^3} + 3{a^2}b{\omega ^2} + 3a{b^2}\omega + {b^3}\]
Taking the like terms common, we get,
\[ \Rightarrow S = 3{a^3} + 3{a^2}b\left( {1 + \omega + {\omega ^2}} \right) + 3a{b^2}\left( {1 + \omega + {\omega ^2}} \right) + 3{b^3}\]
But,\[1 + \omega + {\omega ^2} = 0\], therefore
\[ \Rightarrow S = 3{a^3} + 3{a^2}b\left( 0 \right) + 3a{b^2}\left( 0 \right) + 3{b^3}\]
\[ \Rightarrow S = 3{a^3} + 3{b^3} = 3\left( {{a^3} + {b^3}} \right)\]
Hence, the value of \[{\left( {a + b} \right)^3} + {\left( {a\omega + b{\omega ^2}} \right)^3} + {\left( {a{\omega ^2} + b\omega } \right)^3} = 3\left( {{a^3} + {b^3}} \right)\]
\[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2}\]
Let \[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2} = T\]
Using the formula \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\], we get
\[ \Rightarrow T = = {a^2} + 4ab + 4{b^2} + {a^2}\omega + 4ab + 4{b^2}{\omega ^2} + {a^2}{\omega ^2} + 4ab + 4{b^2}\omega \]
Taking the like terms common, we get,
\[ \Rightarrow T = {a^2}\left( {1 + \omega + {\omega ^2}} \right) + 12ab + 4{b^2}\left( {1 + \omega + {\omega ^2}} \right)\]
But, \[1 + \omega + {\omega ^2} = 0\], hence,
\[ \Rightarrow T = {a^2}\left( 0 \right) + 12ab + 4{b^2}\left( 0 \right)\]
\[ \Rightarrow T = 12ab\]
Hence, the value of \[{\left( {a + 2b} \right)^2} + {\left( {a{\omega ^2} + 2b\omega } \right)^2} + {\left( {a\omega + 2b{\omega ^2}} \right)^2} = 12ab\]
Note: In this question we have assumed that \[1 + \omega + {\omega ^2} = 0\]. We can prove this equation as shown below.
Let us assume the cube root of unity or 1 as:
\[\sqrt[3]{1} = z\]
Cubing both sides, we get
\[ \Rightarrow 1 = {z^3}\]
Or
\[ \Rightarrow {z^3} - 1 = 0\]
Now, using the formula \[\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)\], we get
\[ \Rightarrow \left( {z - 1} \right)\left( {{z^2} + z + 1} \right) = 0\]
Therefore, either \[\left( {z - 1} \right) = 0\]
\[ \Rightarrow z = 1\]
Or, \[\left( {{z^2} + z + 1} \right) = 0\]
Comparing with \[\left( {a{x^2} + bx + c} \right) = 0\]
Here, \[a = 1\], \[b = 1\]and \[c = 1\]
Now, Determinant, \[D = {b^2} - 4ac\]
Hence, for \[\left( {{z^2} + z + 1} \right) = 0\],
\[D = {\left( 1 \right)^2} - 4 \times 1 = 1 - 4 = - 3\]
Now, , Using quadratic formula,
\[z = \dfrac{{ - b \pm \sqrt D }}{{2a}}\]
Here, \[a = 1\], \[b = 1\]and \[c = 1\] and \[D = - 3\]
\[ \Rightarrow z = \dfrac{{ - 1 \pm \sqrt { - 3} }}{2}\]
This can be written as:
\[ \Rightarrow z = \dfrac{{ - 1 \pm \sqrt 3 i}}{2}\]
Therefore, the three cube roots of unity are:
\[1\], \[\dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2}\] and \[\dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2}\]
Now, according to the property, the sum of these three cube roots of unity will be equal to 0.
We know that,
\[1 + \omega + {\omega ^2} = 0\]
Here, \[\omega \] represents the imaginary cube roots.
\[ \Rightarrow 1 + \dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2} + \dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2} = 1 - 1 + 0 = 0\]
Hence, proved.
Recently Updated Pages
Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

