
If (1+i)(1+2i)…(1+ni) = x+iy, then prove that
\[{{x}^{2}}+{{y}^{2}}=2\cdot 5\cdot 10\ldots \left( 1+{{n}^{2}} \right)\]
Answer
606.3k+ views
Hint: Apply mod on both sides of the equation. Use the fact that if a and b are two complex numbers then |ab| = |a||b|. Use the fact that if z = x+iy then $\left| z \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}$. Square both sides and use the fact that \[{{\left( ab \right)}^{m}}={{a}^{m}}{{b}^{m}}\]
Complete step-by-step answer:
We have (1+i)(1+2i)…(1+ni) = x+iy,
Taking absolute value on both sides, we get
|(1+i)(1+2i)…(1+ni)| =| x+iy|
Using |ab| = |a||b|, we get
|(1+i)||(1+2i)|…|(1+ni)| = |x+iy|
Squaring both sides, we get
\[{{\left( \left| \left( 1+i \right) \right|\left| \left( 1+2i \right) \right|\ldots \left| \left( 1+ni \right) \right| \right)}^{2}}\text{ }=\text{ }{{\left( \left| x+iy \right| \right)}^{2}}\]
Using if z = x+iy then $\left| z \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}$, we get
\[\begin{align}
& {{\left( \sqrt{{{1}^{2}}+{{1}^{2}}}\sqrt{{{1}^{2}}+{{2}^{2}}}\ldots \sqrt{{{1}^{2}}+{{n}^{2}}} \right)}^{2}}\text{ }=\text{ }{{\left( \sqrt{{{x}^{2}}+{{y}^{2}}} \right)}^{2}} \\
& \Rightarrow \left( 1+1 \right)\left( 1+4 \right)\ldots \left( {{1}^{2}}+{{n}^{2}} \right)={{x}^{2}}+{{y}^{2}} \\
& \Rightarrow 2\cdot 5\ldots \left( {{1}^{2}}+{{n}^{2}} \right)={{x}^{2}}+{{y}^{2}} \\
\end{align}\]
Hence proved.
Note: [1] The above statement can also be proved by taking the conjugate over the whole expression and using $z\overline{z}={{\left| z \right|}^{2}}$
We have (1+i)(1+2i)…(1+ni) = x+iy (i)
Taking conjugate on both sides we get
\[\overline{~\left( 1+i \right)}\overline{\left( 1+2i \right)}\ldots \overline{\left( 1+ni \right)}\text{ }=\text{ }\overline{x+iy}\text{ (ii)}\]
Multiplying equation (i) and equation (ii) we get
\[\begin{align}
& \overline{~\left( 1+i \right)}\overline{\left( 1+2i \right)}\ldots \overline{\left( 1+ni \right)}(1+i)\left( 1+2i \right)\ldots \left( 1+ni \right)\text{ = }\overline{x+iy}\left( x+iy \right) \\
& \Rightarrow \left( 1+i \right)\left( 1+i \right)\overline{\left( 1+2i \right)}\left( 1+2i \right)\ldots \overline{\left( 1+ni \right)}\left( 1+ni \right)={{x}^{2}}+{{y}^{2}} \\
& \Rightarrow \left( 1+1 \right)\left( 1+4 \right)\ldots \left( {{1}^{2}}+{{n}^{2}} \right)={{x}^{2}}+{{y}^{2}} \\
& \Rightarrow 2\cdot 5\ldots \left( {{1}^{2}}+{{n}^{2}} \right)={{x}^{2}}+{{y}^{2}} \\
\end{align}\]
Hence proved.
[2] The property |ab|= |a||b| of complex numbers are very important and have a lot of applications in the field of mathematics,e.g. It can be proven that the product of numbers expressible as the sum of two squares is also expressible as the sum of two squares. Consider number P and Q such that $P={{a}^{2}}+{{b}^{2}}$ and $Q={{c}^{2}}+{{d}^{2}}$
Let ${{z}_{1}}=a+ib$ and ${{z}_{2}}=c+id$
${{z}_{1}}{{z}_{2}}=ac-bd+i\left( ad+bc \right)$
Taking mod on both sides we get
$\left| {{z}_{1}} \right|\left| {{z}_{2}} \right|=\sqrt{{{\left( ac-bd \right)}^{2}}+{{\left( ad+bc \right)}^{2}}}$
Squaring both sides we get
$PQ={{\left( ac-bd \right)}^{2}}+{{\left( ad+bc \right)}^{2}}$
In other words, PQ is also a sum of squares of two numbers
Complete step-by-step answer:
We have (1+i)(1+2i)…(1+ni) = x+iy,
Taking absolute value on both sides, we get
|(1+i)(1+2i)…(1+ni)| =| x+iy|
Using |ab| = |a||b|, we get
|(1+i)||(1+2i)|…|(1+ni)| = |x+iy|
Squaring both sides, we get
\[{{\left( \left| \left( 1+i \right) \right|\left| \left( 1+2i \right) \right|\ldots \left| \left( 1+ni \right) \right| \right)}^{2}}\text{ }=\text{ }{{\left( \left| x+iy \right| \right)}^{2}}\]
Using if z = x+iy then $\left| z \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}$, we get
\[\begin{align}
& {{\left( \sqrt{{{1}^{2}}+{{1}^{2}}}\sqrt{{{1}^{2}}+{{2}^{2}}}\ldots \sqrt{{{1}^{2}}+{{n}^{2}}} \right)}^{2}}\text{ }=\text{ }{{\left( \sqrt{{{x}^{2}}+{{y}^{2}}} \right)}^{2}} \\
& \Rightarrow \left( 1+1 \right)\left( 1+4 \right)\ldots \left( {{1}^{2}}+{{n}^{2}} \right)={{x}^{2}}+{{y}^{2}} \\
& \Rightarrow 2\cdot 5\ldots \left( {{1}^{2}}+{{n}^{2}} \right)={{x}^{2}}+{{y}^{2}} \\
\end{align}\]
Hence proved.
Note: [1] The above statement can also be proved by taking the conjugate over the whole expression and using $z\overline{z}={{\left| z \right|}^{2}}$
We have (1+i)(1+2i)…(1+ni) = x+iy (i)
Taking conjugate on both sides we get
\[\overline{~\left( 1+i \right)}\overline{\left( 1+2i \right)}\ldots \overline{\left( 1+ni \right)}\text{ }=\text{ }\overline{x+iy}\text{ (ii)}\]
Multiplying equation (i) and equation (ii) we get
\[\begin{align}
& \overline{~\left( 1+i \right)}\overline{\left( 1+2i \right)}\ldots \overline{\left( 1+ni \right)}(1+i)\left( 1+2i \right)\ldots \left( 1+ni \right)\text{ = }\overline{x+iy}\left( x+iy \right) \\
& \Rightarrow \left( 1+i \right)\left( 1+i \right)\overline{\left( 1+2i \right)}\left( 1+2i \right)\ldots \overline{\left( 1+ni \right)}\left( 1+ni \right)={{x}^{2}}+{{y}^{2}} \\
& \Rightarrow \left( 1+1 \right)\left( 1+4 \right)\ldots \left( {{1}^{2}}+{{n}^{2}} \right)={{x}^{2}}+{{y}^{2}} \\
& \Rightarrow 2\cdot 5\ldots \left( {{1}^{2}}+{{n}^{2}} \right)={{x}^{2}}+{{y}^{2}} \\
\end{align}\]
Hence proved.
[2] The property |ab|= |a||b| of complex numbers are very important and have a lot of applications in the field of mathematics,e.g. It can be proven that the product of numbers expressible as the sum of two squares is also expressible as the sum of two squares. Consider number P and Q such that $P={{a}^{2}}+{{b}^{2}}$ and $Q={{c}^{2}}+{{d}^{2}}$
Let ${{z}_{1}}=a+ib$ and ${{z}_{2}}=c+id$
${{z}_{1}}{{z}_{2}}=ac-bd+i\left( ad+bc \right)$
Taking mod on both sides we get
$\left| {{z}_{1}} \right|\left| {{z}_{2}} \right|=\sqrt{{{\left( ac-bd \right)}^{2}}+{{\left( ad+bc \right)}^{2}}}$
Squaring both sides we get
$PQ={{\left( ac-bd \right)}^{2}}+{{\left( ad+bc \right)}^{2}}$
In other words, PQ is also a sum of squares of two numbers
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

