
If \[(0,\beta )\]lies on or inside the triangle with the sides \[y+3x+2=0,3y-2x-5=0\] and \[4y+x-
14=0\], then
(a) \[0\le \beta \le \dfrac{7}{2}\]
(b) \[0\le \beta \le \dfrac{5}{2}\]
(c) \[\dfrac{5}{3}\le \beta \le \dfrac{7}{2}\]
(d) None of these
Answer
557.1k+ views
Hint: Plot the given 3 line equations to form a triangle and find the point of intersection.
The figure for the given problem is as follows:
Now the given point \[(0,\beta )\]lies on the y-axis as its x-coordinate is zero.
From the above figure we see that the y-axis passes through the sides AC and BC.
Now we will substitute \[(0,\beta )\] in the equation of side AC, i.e.,
\[4y+x-14=0\]
We get,
\[4(\beta )+0-14=0\]
\[4\beta =14\]
\[\beta =\dfrac{14}{4}\]
\[\beta =\dfrac{7}{2}\]
So the point of intersection of the y-axis and side AC is \[\left( 0,\dfrac{7}{2} \right)\].
Similarly, we will substitute \[(0,\beta )\] in the equation of side BC, i.e.,
\[3y-2x-5=0\]
We get,
\[3\beta -2(0)-5=0\]
\[3\beta =5\]
\[\beta =\dfrac{5}{3}\]
So, the point of intersection of the y-axis and side BC is \[\left( 0,\dfrac{5}{3} \right)\].
Now as the given point lies on y-axis as well as on or inside of the triangle, so all the points between \[\left( 0,\dfrac{5}{3} \right)\]and \[\left( 0,\dfrac{7}{2} \right)\], will satisfy the condition.
So, the value of \[\beta \] will be,
\[\dfrac{5}{3}\le \beta \le \dfrac{7}{2}\]
Hence, the correct answer is option (c).
Note: Here we can solve for the vertices of the triangle from the given equations of the sides. Then find the value of \[\beta \]. But it will be a lengthy process.
The figure for the given problem is as follows:

Now the given point \[(0,\beta )\]lies on the y-axis as its x-coordinate is zero.
From the above figure we see that the y-axis passes through the sides AC and BC.
Now we will substitute \[(0,\beta )\] in the equation of side AC, i.e.,
\[4y+x-14=0\]
We get,
\[4(\beta )+0-14=0\]
\[4\beta =14\]
\[\beta =\dfrac{14}{4}\]
\[\beta =\dfrac{7}{2}\]
So the point of intersection of the y-axis and side AC is \[\left( 0,\dfrac{7}{2} \right)\].
Similarly, we will substitute \[(0,\beta )\] in the equation of side BC, i.e.,
\[3y-2x-5=0\]
We get,
\[3\beta -2(0)-5=0\]
\[3\beta =5\]
\[\beta =\dfrac{5}{3}\]
So, the point of intersection of the y-axis and side BC is \[\left( 0,\dfrac{5}{3} \right)\].
Now as the given point lies on y-axis as well as on or inside of the triangle, so all the points between \[\left( 0,\dfrac{5}{3} \right)\]and \[\left( 0,\dfrac{7}{2} \right)\], will satisfy the condition.
So, the value of \[\beta \] will be,
\[\dfrac{5}{3}\le \beta \le \dfrac{7}{2}\]
Hence, the correct answer is option (c).
Note: Here we can solve for the vertices of the triangle from the given equations of the sides. Then find the value of \[\beta \]. But it will be a lengthy process.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

Whales are warmblooded animals which live in cold seas class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE
