Answer
Verified
391.8k+ views
Hint: Based on this problem we have a combination formula in which we arrange (or) by selecting the objects appropriately.
Here we will use the combination formula in this problem.
Formula: \[n!\, = \,n\, \times \,\left( {n\, - \,1} \right)\, \times \,\left( {n\, - \,2} \right)\, \times \,...\, \times \,3\, \times \,2\, \times \,1\]
\[^n{C_{r\,}} = \,\dfrac{{n!}}{{\left( {n - r} \right)!r!}}\,\,\,;\,\,0 \leqslant r < n\] And
\[^n\,{C_{o\,}} = n{C_n}\, = 1\]
Also, \[\,^n\,{C_1}\, = \,n\]
Complete step by step answer:
Based on the given problem,
Given that: \[4\,\] pants, \[3\] shirts and \[2\] banians
So, probably a man can put them in some number of ways.
That is,
\[\left( {^4\,{C_1} \times\,^3{C_1}\, \times \,^2{C_1}} \right)\] ways
Now, expanding the above expression using the formula \[^n{C_1}\, = \,n\] , we get \[^4{C_1} = 4,\,\,^3{C_1} = 3\,\] and \[^2{C_1}\, = 2\]
And so we have,
\[\left( {4\, \times \,3\, \times \,2} \right)\] ways
On simplifying the above expression by multiplying the each term we get
(24) ways
So, therefore we can conclude that the number of ways which he can put them on is \[\,24\] ways.
Note: The number of clothes in which he can put on him is \[\,24\] ways, Let us discuss the above problem as recap (or) review it at glance. Here in this problem, if he has \[4\] pants, then he has to select all the four pants which he has to wear on him. That is, he can select the \[4\] pants in \[4\] ways, similarly, if he has \[3\] shirts, then he instantly pick/select the \[3\] shirts in \[3\] ways, also if he has \[2\] baniyans and has to select it then he can do it in \[2\] ways. Thus, in general if he picks \[a,b,\] and \[c\] objects all one at a time then, the total number of ways will be chosen as \[\left( {a\, \times \,b\, \times \,c} \right)\] ways. And similarly here we arrive at the conclusion as the total number of ways he can put the cloth on him is \[\left( {4\, \times \,3\, \times \,2} \right)\] ways which is equals to \[24\] ways.
Here we will use the combination formula in this problem.
Formula: \[n!\, = \,n\, \times \,\left( {n\, - \,1} \right)\, \times \,\left( {n\, - \,2} \right)\, \times \,...\, \times \,3\, \times \,2\, \times \,1\]
\[^n{C_{r\,}} = \,\dfrac{{n!}}{{\left( {n - r} \right)!r!}}\,\,\,;\,\,0 \leqslant r < n\] And
\[^n\,{C_{o\,}} = n{C_n}\, = 1\]
Also, \[\,^n\,{C_1}\, = \,n\]
Complete step by step answer:
Based on the given problem,
Given that: \[4\,\] pants, \[3\] shirts and \[2\] banians
So, probably a man can put them in some number of ways.
That is,
\[\left( {^4\,{C_1} \times\,^3{C_1}\, \times \,^2{C_1}} \right)\] ways
Now, expanding the above expression using the formula \[^n{C_1}\, = \,n\] , we get \[^4{C_1} = 4,\,\,^3{C_1} = 3\,\] and \[^2{C_1}\, = 2\]
And so we have,
\[\left( {4\, \times \,3\, \times \,2} \right)\] ways
On simplifying the above expression by multiplying the each term we get
(24) ways
So, therefore we can conclude that the number of ways which he can put them on is \[\,24\] ways.
Note: The number of clothes in which he can put on him is \[\,24\] ways, Let us discuss the above problem as recap (or) review it at glance. Here in this problem, if he has \[4\] pants, then he has to select all the four pants which he has to wear on him. That is, he can select the \[4\] pants in \[4\] ways, similarly, if he has \[3\] shirts, then he instantly pick/select the \[3\] shirts in \[3\] ways, also if he has \[2\] baniyans and has to select it then he can do it in \[2\] ways. Thus, in general if he picks \[a,b,\] and \[c\] objects all one at a time then, the total number of ways will be chosen as \[\left( {a\, \times \,b\, \times \,c} \right)\] ways. And similarly here we arrive at the conclusion as the total number of ways he can put the cloth on him is \[\left( {4\, \times \,3\, \times \,2} \right)\] ways which is equals to \[24\] ways.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it