Answer
Verified
423.6k+ views
Hint:For simplifying the original equation , take base ten exponential of both sides of the equation, then apply the logarithm formula ${b^{{{\log }_b}a}} = a$ to simplify the equation. Then recall that the logarithm function says $\log x$ is only defined when $x$ is greater than zero.
Formula used:
We used logarithm property i.e.
${b^{{{\log }_b}a}} = a$ , the logarithm function says $\log x$ is only defined when $x$ is greater than zero.
Complete solution step by step:
It is given that ,
$\log (2x - 1) = 3$
We have to solve for $x$ ,
Now , by assuming the base of the logarithm to be $10$ ,then take the base $10$ exponential of both sides of the equation, we will get the following result ,
${10^{{{\log }_{10}}(2x - 1)}} = {10^3}$
By applying the logarithm formula ${b^{{{\log }_b}a}} = a$ . we will get the following result ,
$2x - 1 = 1000$ ,
Now simplify the above equation as ,
$
\Rightarrow 2x = 1000 + 1 \\
\Rightarrow 2x = 1001 \\
\Rightarrow x = \dfrac{{1001}}{2} \\
$
Now recall that the logarithm function says $\log x$ is only defined when $x$ is greater than zero.
Therefore, in our original equation $\log (2x - 1) = 3$ ,
Here we must have ,
$(2x - 1) > 0$ ,
We have $x = \dfrac{{1001}}{2}$
We get ,
$1000 > 0$
Therefore, we have our solution i.e., $x = \dfrac{{1001}}{2}$ .
Note: The logarithm function says $\log x$ is only defined when $x$ is greater than zero. While defining logarithm function one should remember that the base of the log must be a positive real number and not equals to one . At the end we must recall that the logarithm function says $\log x$ is only defined when $x$ is greater than zero. While performing logarithm properties we have remember certain conditions , our end result must satisfy domain of that logarithm
Formula used:
We used logarithm property i.e.
${b^{{{\log }_b}a}} = a$ , the logarithm function says $\log x$ is only defined when $x$ is greater than zero.
Complete solution step by step:
It is given that ,
$\log (2x - 1) = 3$
We have to solve for $x$ ,
Now , by assuming the base of the logarithm to be $10$ ,then take the base $10$ exponential of both sides of the equation, we will get the following result ,
${10^{{{\log }_{10}}(2x - 1)}} = {10^3}$
By applying the logarithm formula ${b^{{{\log }_b}a}} = a$ . we will get the following result ,
$2x - 1 = 1000$ ,
Now simplify the above equation as ,
$
\Rightarrow 2x = 1000 + 1 \\
\Rightarrow 2x = 1001 \\
\Rightarrow x = \dfrac{{1001}}{2} \\
$
Now recall that the logarithm function says $\log x$ is only defined when $x$ is greater than zero.
Therefore, in our original equation $\log (2x - 1) = 3$ ,
Here we must have ,
$(2x - 1) > 0$ ,
We have $x = \dfrac{{1001}}{2}$
We get ,
$1000 > 0$
Therefore, we have our solution i.e., $x = \dfrac{{1001}}{2}$ .
Note: The logarithm function says $\log x$ is only defined when $x$ is greater than zero. While defining logarithm function one should remember that the base of the log must be a positive real number and not equals to one . At the end we must recall that the logarithm function says $\log x$ is only defined when $x$ is greater than zero. While performing logarithm properties we have remember certain conditions , our end result must satisfy domain of that logarithm
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE