Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

How do you solve\[\ln \left( x \right)-2=0\]?

seo-qna
Last updated date: 13th Jun 2024
Total views: 372.3k
Views today: 10.72k
Answer
VerifiedVerified
372.3k+ views
Hint:In the given question, we have been asked to find the value of ‘x’ and it is given that \[\ln \left( x \right)-2=0\]. In order to solve the question, first we need to use the basic property of logarithms i.e. If \[x\] and b are positive real numbers and b is not equal to 1, then \[{{\log }_{b}}\left( x \right)=y\] is equivalent to \[{{b}^{y}}=x\]. Then we simplify the equation further to get the possible values of ‘x’. After applying the properties of logarithm, we will solve the equation in a way we solve general linear equations. Then, we will get the required solution.

Formula used:
If \[x\] and b are positive real numbers and b is not equal to 1,
Then \[{{\log }_{b}}\left( x \right)=y\] is equivalent to \[{{b}^{y}}=x\].

Complete step by step solution:
We have given that,
\[\ln \left( x \right)-2=0\]
Transposing 2 to the right side of the equation, we get
\[\Rightarrow \ln \left( x \right)=2\]
Using the definition of log,
If \[x\] and b are positive real numbers and b is not equal to 1,
Then \[{{\log }_{b}}\left( x \right)=y\]is equivalent to\[{{b}^{y}}=x\].
Applying the above property, we get
\[\Rightarrow x={{e}^{2}}\]
By using the calculator,
\[\Rightarrow {{e}^{2}}=7.389\]
Therefore, the possible value of ‘x’ is \[{{e}^{2}}\] or 7.389.
It is the required solution.

Note: In the given question, we need to find the value of ‘x’. To solve these types of questions, we used the basic formulas of logarithm. Students should always be required to keep in mind all the formulae for solving the question easily. After applying log formulae to the equation, we need to solve the equation in the way we solve general linear equations.