
How do you solve ${{x}^{2}}-10=0$?
Answer
445.2k+ views
Hint: We first try to explain the concept of factorisation and the ways of factorisation of a polynomial can be done. We use the identity theorem of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ to factor the given polynomial ${{x}^{2}}-10=0$. We assume the values of $a=x;b=\sqrt{10}$. The final multiplied linear polynomials are the solution of the problem.
Complete step-by-step solution:
The main condition of factorisation is to break the given number or function or polynomial into multiple of basic primary numbers or polynomials.
For the process of factorisation, we use the concept of common elements or identities to convert into multiplication form.
For the factorisation of the given quadratic polynomial ${{x}^{2}}-10$, we apply the factorisation identity of difference of two squares as ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
We get \[{{x}^{2}}-10={{\left( x \right)}^{2}}-{{\left( \sqrt{10} \right)}^{2}}\]. We put the value of $a=x;b=\sqrt{10}$.
Factorisation of the polynomial gives us ${{x}^{2}}-10={{\left( x \right)}^{2}}-{{\left( \sqrt{10} \right)}^{2}}=\left( x+\sqrt{10} \right)\left( x-\sqrt{10} \right)$.
These two multiplied linear polynomials can’t be broken any more.
Therefore, the final factorisation of ${{x}^{2}}-10$ is $\left( x+\sqrt{10} \right)\left( x-\sqrt{10} \right)$.
Therefore, we get $\left( x+\sqrt{10} \right)\left( x-\sqrt{10} \right)=0$. Multiplied form of two polynomials gives 0 which gives individual terms to be 0.
Therefore, either $\left( x+\sqrt{10} \right)$ is 0 or $\left( x-\sqrt{10} \right)$ is 0.
The solutions are $x=\pm \sqrt{10}$.
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of x will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
In the given equation we have ${{x}^{2}}-10=0$. The values of a, b, c is $1,0,-10$ respectively.
We put the values and get $x=\dfrac{-0\pm \sqrt{{{0}^{2}}-4\times 1\times \left( -10 \right)}}{2\times 1}=\dfrac{\pm \sqrt{40}}{2}=\dfrac{\pm 2\sqrt{10}}{2}=\pm \sqrt{10}$.
Note: We find the value of x for which the function $f\left( x \right)={{x}^{2}}-10=0$. We can see $f\left( \sqrt{10} \right)={{\left( \sqrt{10} \right)}^{2}}-10=10-10=0$. So, the root of the $f\left( x \right)={{x}^{2}}-10$ will be the function $\left( x-\sqrt{10} \right)$. This means for $x=a$, if $f\left( a \right)=0$ then $\left( x-a \right)$ is a root of $f\left( x \right)$.
Now, $f\left( x \right)={{x}^{2}}-10=\left( x+\sqrt{10} \right)\left( x-\sqrt{10} \right)$. We can also do the same process for $\left( x+\sqrt{10} \right)$.
Complete step-by-step solution:
The main condition of factorisation is to break the given number or function or polynomial into multiple of basic primary numbers or polynomials.
For the process of factorisation, we use the concept of common elements or identities to convert into multiplication form.
For the factorisation of the given quadratic polynomial ${{x}^{2}}-10$, we apply the factorisation identity of difference of two squares as ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
We get \[{{x}^{2}}-10={{\left( x \right)}^{2}}-{{\left( \sqrt{10} \right)}^{2}}\]. We put the value of $a=x;b=\sqrt{10}$.
Factorisation of the polynomial gives us ${{x}^{2}}-10={{\left( x \right)}^{2}}-{{\left( \sqrt{10} \right)}^{2}}=\left( x+\sqrt{10} \right)\left( x-\sqrt{10} \right)$.
These two multiplied linear polynomials can’t be broken any more.
Therefore, the final factorisation of ${{x}^{2}}-10$ is $\left( x+\sqrt{10} \right)\left( x-\sqrt{10} \right)$.
Therefore, we get $\left( x+\sqrt{10} \right)\left( x-\sqrt{10} \right)=0$. Multiplied form of two polynomials gives 0 which gives individual terms to be 0.
Therefore, either $\left( x+\sqrt{10} \right)$ is 0 or $\left( x-\sqrt{10} \right)$ is 0.
The solutions are $x=\pm \sqrt{10}$.
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of x will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
In the given equation we have ${{x}^{2}}-10=0$. The values of a, b, c is $1,0,-10$ respectively.
We put the values and get $x=\dfrac{-0\pm \sqrt{{{0}^{2}}-4\times 1\times \left( -10 \right)}}{2\times 1}=\dfrac{\pm \sqrt{40}}{2}=\dfrac{\pm 2\sqrt{10}}{2}=\pm \sqrt{10}$.
Note: We find the value of x for which the function $f\left( x \right)={{x}^{2}}-10=0$. We can see $f\left( \sqrt{10} \right)={{\left( \sqrt{10} \right)}^{2}}-10=10-10=0$. So, the root of the $f\left( x \right)={{x}^{2}}-10$ will be the function $\left( x-\sqrt{10} \right)$. This means for $x=a$, if $f\left( a \right)=0$ then $\left( x-a \right)$ is a root of $f\left( x \right)$.
Now, $f\left( x \right)={{x}^{2}}-10=\left( x+\sqrt{10} \right)\left( x-\sqrt{10} \right)$. We can also do the same process for $\left( x+\sqrt{10} \right)$.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Define least count of vernier callipers How do you class 11 physics CBSE
