Answer

Verified

408.6k+ views

**Hint:**We first try to explain the concept of factorisation and the ways of factorisation of a polynomial can be done. We use the identity theorem of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ to factor the given polynomial ${{x}^{2}}-10=0$. We assume the values of $a=x;b=\sqrt{10}$. The final multiplied linear polynomials are the solution of the problem.

**Complete step-by-step solution:**

The main condition of factorisation is to break the given number or function or polynomial into multiple of basic primary numbers or polynomials.

For the process of factorisation, we use the concept of common elements or identities to convert into multiplication form.

For the factorisation of the given quadratic polynomial ${{x}^{2}}-10$, we apply the factorisation identity of difference of two squares as ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.

We get \[{{x}^{2}}-10={{\left( x \right)}^{2}}-{{\left( \sqrt{10} \right)}^{2}}\]. We put the value of $a=x;b=\sqrt{10}$.

Factorisation of the polynomial gives us ${{x}^{2}}-10={{\left( x \right)}^{2}}-{{\left( \sqrt{10} \right)}^{2}}=\left( x+\sqrt{10} \right)\left( x-\sqrt{10} \right)$.

These two multiplied linear polynomials can’t be broken any more.

Therefore, the final factorisation of ${{x}^{2}}-10$ is $\left( x+\sqrt{10} \right)\left( x-\sqrt{10} \right)$.

Therefore, we get $\left( x+\sqrt{10} \right)\left( x-\sqrt{10} \right)=0$. Multiplied form of two polynomials gives 0 which gives individual terms to be 0.

Therefore, either $\left( x+\sqrt{10} \right)$ is 0 or $\left( x-\sqrt{10} \right)$ is 0.

The solutions are $x=\pm \sqrt{10}$.

We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of x will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.

In the given equation we have ${{x}^{2}}-10=0$. The values of a, b, c is $1,0,-10$ respectively.

**We put the values and get $x=\dfrac{-0\pm \sqrt{{{0}^{2}}-4\times 1\times \left( -10 \right)}}{2\times 1}=\dfrac{\pm \sqrt{40}}{2}=\dfrac{\pm 2\sqrt{10}}{2}=\pm \sqrt{10}$.**

**Note:**We find the value of x for which the function $f\left( x \right)={{x}^{2}}-10=0$. We can see $f\left( \sqrt{10} \right)={{\left( \sqrt{10} \right)}^{2}}-10=10-10=0$. So, the root of the $f\left( x \right)={{x}^{2}}-10$ will be the function $\left( x-\sqrt{10} \right)$. This means for $x=a$, if $f\left( a \right)=0$ then $\left( x-a \right)$ is a root of $f\left( x \right)$.

Now, $f\left( x \right)={{x}^{2}}-10=\left( x+\sqrt{10} \right)\left( x-\sqrt{10} \right)$. We can also do the same process for $\left( x+\sqrt{10} \right)$.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which are the Top 10 Largest Countries of the World?

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

How do you graph the function fx 4x class 9 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Change the following sentences into negative and interrogative class 10 english CBSE