
How do you solve ${{x}^{2}}-10=0$?
Answer
541.5k+ views
Hint: We first try to explain the concept of factorisation and the ways of factorisation of a polynomial can be done. We use the identity theorem of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ to factor the given polynomial ${{x}^{2}}-10=0$. We assume the values of $a=x;b=\sqrt{10}$. The final multiplied linear polynomials are the solution of the problem.
Complete step-by-step solution:
The main condition of factorisation is to break the given number or function or polynomial into multiple of basic primary numbers or polynomials.
For the process of factorisation, we use the concept of common elements or identities to convert into multiplication form.
For the factorisation of the given quadratic polynomial ${{x}^{2}}-10$, we apply the factorisation identity of difference of two squares as ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
We get \[{{x}^{2}}-10={{\left( x \right)}^{2}}-{{\left( \sqrt{10} \right)}^{2}}\]. We put the value of $a=x;b=\sqrt{10}$.
Factorisation of the polynomial gives us ${{x}^{2}}-10={{\left( x \right)}^{2}}-{{\left( \sqrt{10} \right)}^{2}}=\left( x+\sqrt{10} \right)\left( x-\sqrt{10} \right)$.
These two multiplied linear polynomials can’t be broken any more.
Therefore, the final factorisation of ${{x}^{2}}-10$ is $\left( x+\sqrt{10} \right)\left( x-\sqrt{10} \right)$.
Therefore, we get $\left( x+\sqrt{10} \right)\left( x-\sqrt{10} \right)=0$. Multiplied form of two polynomials gives 0 which gives individual terms to be 0.
Therefore, either $\left( x+\sqrt{10} \right)$ is 0 or $\left( x-\sqrt{10} \right)$ is 0.
The solutions are $x=\pm \sqrt{10}$.
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of x will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
In the given equation we have ${{x}^{2}}-10=0$. The values of a, b, c is $1,0,-10$ respectively.
We put the values and get $x=\dfrac{-0\pm \sqrt{{{0}^{2}}-4\times 1\times \left( -10 \right)}}{2\times 1}=\dfrac{\pm \sqrt{40}}{2}=\dfrac{\pm 2\sqrt{10}}{2}=\pm \sqrt{10}$.
Note: We find the value of x for which the function $f\left( x \right)={{x}^{2}}-10=0$. We can see $f\left( \sqrt{10} \right)={{\left( \sqrt{10} \right)}^{2}}-10=10-10=0$. So, the root of the $f\left( x \right)={{x}^{2}}-10$ will be the function $\left( x-\sqrt{10} \right)$. This means for $x=a$, if $f\left( a \right)=0$ then $\left( x-a \right)$ is a root of $f\left( x \right)$.
Now, $f\left( x \right)={{x}^{2}}-10=\left( x+\sqrt{10} \right)\left( x-\sqrt{10} \right)$. We can also do the same process for $\left( x+\sqrt{10} \right)$.
Complete step-by-step solution:
The main condition of factorisation is to break the given number or function or polynomial into multiple of basic primary numbers or polynomials.
For the process of factorisation, we use the concept of common elements or identities to convert into multiplication form.
For the factorisation of the given quadratic polynomial ${{x}^{2}}-10$, we apply the factorisation identity of difference of two squares as ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$.
We get \[{{x}^{2}}-10={{\left( x \right)}^{2}}-{{\left( \sqrt{10} \right)}^{2}}\]. We put the value of $a=x;b=\sqrt{10}$.
Factorisation of the polynomial gives us ${{x}^{2}}-10={{\left( x \right)}^{2}}-{{\left( \sqrt{10} \right)}^{2}}=\left( x+\sqrt{10} \right)\left( x-\sqrt{10} \right)$.
These two multiplied linear polynomials can’t be broken any more.
Therefore, the final factorisation of ${{x}^{2}}-10$ is $\left( x+\sqrt{10} \right)\left( x-\sqrt{10} \right)$.
Therefore, we get $\left( x+\sqrt{10} \right)\left( x-\sqrt{10} \right)=0$. Multiplied form of two polynomials gives 0 which gives individual terms to be 0.
Therefore, either $\left( x+\sqrt{10} \right)$ is 0 or $\left( x-\sqrt{10} \right)$ is 0.
The solutions are $x=\pm \sqrt{10}$.
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of x will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
In the given equation we have ${{x}^{2}}-10=0$. The values of a, b, c is $1,0,-10$ respectively.
We put the values and get $x=\dfrac{-0\pm \sqrt{{{0}^{2}}-4\times 1\times \left( -10 \right)}}{2\times 1}=\dfrac{\pm \sqrt{40}}{2}=\dfrac{\pm 2\sqrt{10}}{2}=\pm \sqrt{10}$.
Note: We find the value of x for which the function $f\left( x \right)={{x}^{2}}-10=0$. We can see $f\left( \sqrt{10} \right)={{\left( \sqrt{10} \right)}^{2}}-10=10-10=0$. So, the root of the $f\left( x \right)={{x}^{2}}-10$ will be the function $\left( x-\sqrt{10} \right)$. This means for $x=a$, if $f\left( a \right)=0$ then $\left( x-a \right)$ is a root of $f\left( x \right)$.
Now, $f\left( x \right)={{x}^{2}}-10=\left( x+\sqrt{10} \right)\left( x-\sqrt{10} \right)$. We can also do the same process for $\left( x+\sqrt{10} \right)$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

