
How do you solve \[{(x - 3)^2} = 25\]?
Answer
464.4k+ views
Hint: Here in this question we have to simplify the given algebraic equation. To simplify the above algebraic equation we use arithmetic operation multiplication. It is also simplified by using the standard algebraic formula \[{(a - b)^2} = {a^2} - 2ab + {b^2}\]. Hence we can obtain the solution for the question.
Complete step-by-step solution:
The algebraic expression or equation is a combination of variables, constants and arithmetic operations.
The equation can be simplified by using two methods.
Method 1:
Now consider the given equation \[{(x - 3)^2} = 25\]
The exponential form can be expanded
\[ \Rightarrow (x - 3)(x - 3) = 25\]
The terms in the braces are multiplied. On multiplying we get
\[ \Rightarrow x(x - 3) - 3(x - 3) = 25\]
On term-by-term multiplication
\[ \Rightarrow {x^2} - 3x - 3x + 9 = 25\]
On simplifying we get
\[ \Rightarrow {x^2} - 6x - 16 = 0\]
We can solve for x by using the formula \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
So we have
\[
\Rightarrow x = \dfrac{{ - ( - 6) \pm \sqrt {{{( - 6)}^2} - 4(1)( - 16)} }}{{2(1)}} \\
\Rightarrow x = \dfrac{{6 \pm \sqrt {36 + 64} }}{2} \\
\Rightarrow x = \dfrac{{6 \pm \sqrt {100} }}{2} \\
\Rightarrow x = \dfrac{{6 \pm 10}}{2} \\
\]
So we have
\[ \Rightarrow x = \dfrac{{6 + 10}}{2}\] and \[x = \dfrac{{6 - 10}}{2}\]
Therefore
\[ \Rightarrow x = 8\] and \[x = - 2\]
Hence we have simplified the given equation
Method 2:
Now consider the given algebraic equation \[{(x - 3)^2} = 25\]
Apply the square root on the both sides of the equation we get
\[ \Rightarrow \sqrt {{{(x - 3)}^2}} = \sqrt {25} \]
In the LHS of the above equation the square and square root will get cancels and in the rhs the number 25 is a perfect square so we have
\[ \Rightarrow (x - 3) = \pm 5\]
Suppose in the RHS we have +5
\[ \Rightarrow x - 3 = 5\]
Taking -3 to RHS and simplifying we get
\[ \Rightarrow x = 5 + 3 = 8\]
Suppose in the RHS we have -5
\[ \Rightarrow x - 3 = - 5\]
Taking -3 to RHS and simplifying we get
\[ \Rightarrow x = - 5 + 3 = - 2\]
Hence we have simplified the given equation
Solving the equation by method 1 and method 2 we have obtained the final answer as the same.
Note: To multiply we use operation multiplication, multiplication of numbers is different from the multiplication of algebraic expression. In the algebraic expression it involves the both number that is constant and variables. Variables are also multiplied, if the variable is the same then the result will be in the form of exponent.
Complete step-by-step solution:
The algebraic expression or equation is a combination of variables, constants and arithmetic operations.
The equation can be simplified by using two methods.
Method 1:
Now consider the given equation \[{(x - 3)^2} = 25\]
The exponential form can be expanded
\[ \Rightarrow (x - 3)(x - 3) = 25\]
The terms in the braces are multiplied. On multiplying we get
\[ \Rightarrow x(x - 3) - 3(x - 3) = 25\]
On term-by-term multiplication
\[ \Rightarrow {x^2} - 3x - 3x + 9 = 25\]
On simplifying we get
\[ \Rightarrow {x^2} - 6x - 16 = 0\]
We can solve for x by using the formula \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\]
So we have
\[
\Rightarrow x = \dfrac{{ - ( - 6) \pm \sqrt {{{( - 6)}^2} - 4(1)( - 16)} }}{{2(1)}} \\
\Rightarrow x = \dfrac{{6 \pm \sqrt {36 + 64} }}{2} \\
\Rightarrow x = \dfrac{{6 \pm \sqrt {100} }}{2} \\
\Rightarrow x = \dfrac{{6 \pm 10}}{2} \\
\]
So we have
\[ \Rightarrow x = \dfrac{{6 + 10}}{2}\] and \[x = \dfrac{{6 - 10}}{2}\]
Therefore
\[ \Rightarrow x = 8\] and \[x = - 2\]
Hence we have simplified the given equation
Method 2:
Now consider the given algebraic equation \[{(x - 3)^2} = 25\]
Apply the square root on the both sides of the equation we get
\[ \Rightarrow \sqrt {{{(x - 3)}^2}} = \sqrt {25} \]
In the LHS of the above equation the square and square root will get cancels and in the rhs the number 25 is a perfect square so we have
\[ \Rightarrow (x - 3) = \pm 5\]
Suppose in the RHS we have +5
\[ \Rightarrow x - 3 = 5\]
Taking -3 to RHS and simplifying we get
\[ \Rightarrow x = 5 + 3 = 8\]
Suppose in the RHS we have -5
\[ \Rightarrow x - 3 = - 5\]
Taking -3 to RHS and simplifying we get
\[ \Rightarrow x = - 5 + 3 = - 2\]
Hence we have simplified the given equation
Solving the equation by method 1 and method 2 we have obtained the final answer as the same.
Note: To multiply we use operation multiplication, multiplication of numbers is different from the multiplication of algebraic expression. In the algebraic expression it involves the both number that is constant and variables. Variables are also multiplied, if the variable is the same then the result will be in the form of exponent.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Dr BR Ambedkars fathers name was Ramaji Sakpal and class 10 social science CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the full form of POSCO class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
