Answer
Verified
425.4k+ views
Hint: In this question, we have a trigonometric function and to solve this we used the formula for factor; power of ‘a’ is two \[\left( 2 \right)\] minus power of ‘b’ is two\[\left( 2 \right)\]. The expression of power of ‘a’ is two \[\left( 2 \right)\] minus power of ‘b’ is two \[\left( 2 \right)\]is called the difference of squares. And this formula is expressed as below.
\[\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)\]
This is the formula for the difference of squares.
Complete step by step answer:
Let’s come to the question, in the question the data is given as below.
\[{\tan ^2}x - 1 = 0\]
Then we used the difference of the square formula. The above equation is written as.
\[\left( {\tan x - 1} \right)\left( {\tan x + 1} \right) = 0\]
We know that, if the product of any number of terms is equal to zero then one of the terms must equal to zero. Then,
\[
\tan x - 1 = 0 \\
\tan x = 1 \\
\]
And,
\[
\tan x + 1 = 0 \\
\tan x = - 1 \\
\]
We know that for tangent function,
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4}} \right) = \tan \left( {\dfrac{{5\pi }}{4}} \right) = 1\]
And,
\[\tan \left( {\dfrac{{3\pi }}{4}} \right) = \tan \left( {\dfrac{{7\pi }}{4}} \right) = - 1\]
Then we find the value of\[x\]for tangent function.
Thus,
\[ \Rightarrow \tan x = 1 = \tan \left( {\dfrac{\pi }{4}} \right) = \tan \left( {\dfrac{{5\pi }}{4}} \right)\]
Thus, \[x = \left( {\dfrac{\pi }{4}} \right),\left( {\dfrac{{5\pi }}{4}} \right)\] for \[0\]to\[2\pi \].
And,
\[ \Rightarrow \tan x = - 1 = \tan \left( {\dfrac{{3\pi }}{4}} \right) = \tan \left( {\dfrac{{7\pi }}{4}} \right)\]
Thus, \[x = \left( {\dfrac{{3\pi }}{4}} \right),\left( {\dfrac{{7\pi }}{4}} \right)\] for \[0\] to \[2\pi \].
Therefore, the value of \[x\]are \[\left( {\dfrac{\pi }{4}} \right),\left( {\dfrac{{5\pi }}{4}} \right),\left( {\dfrac{{3\pi }}{4}} \right),\left( {\dfrac{{7\pi }}{4}} \right)\] for domain \[\left( {0 - 2\pi } \right)\].
Note:
We know that, we find the factor of \[\left( {{a^2} - {b^2}} \right)\]form type.
First, we want to calculate the factor of the above formula.
Then,
\[ \Rightarrow {a^2} - {b^2}\]
In the above expression, we can add and subtract the\[ab\]. By adding and subtracting the\[ab\], there is no effect in the above expression.
Then,
The above expression is written as below.
\[{a^2} - {b^2} + ab - ab\]
This is written as below form.
\[ \Rightarrow {a^2} - ab + ab - {b^2}\]
Then we take the common, in the first two we take the\[a\], is common and the last two we take the\[b\], is common.
Then the above expression is written as below.
\[a\left( {a - b} \right) + b\left( {a - b} \right)\]
By solving the above expression, the result would be as below.
\[\therefore \left( {a - b} \right)\left( {a + b} \right)\]
Then, we prove that \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\].
\[\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)\]
This is the formula for the difference of squares.
Complete step by step answer:
Let’s come to the question, in the question the data is given as below.
\[{\tan ^2}x - 1 = 0\]
Then we used the difference of the square formula. The above equation is written as.
\[\left( {\tan x - 1} \right)\left( {\tan x + 1} \right) = 0\]
We know that, if the product of any number of terms is equal to zero then one of the terms must equal to zero. Then,
\[
\tan x - 1 = 0 \\
\tan x = 1 \\
\]
And,
\[
\tan x + 1 = 0 \\
\tan x = - 1 \\
\]
We know that for tangent function,
\[ \Rightarrow \tan \left( {\dfrac{\pi }{4}} \right) = \tan \left( {\dfrac{{5\pi }}{4}} \right) = 1\]
And,
\[\tan \left( {\dfrac{{3\pi }}{4}} \right) = \tan \left( {\dfrac{{7\pi }}{4}} \right) = - 1\]
Then we find the value of\[x\]for tangent function.
Thus,
\[ \Rightarrow \tan x = 1 = \tan \left( {\dfrac{\pi }{4}} \right) = \tan \left( {\dfrac{{5\pi }}{4}} \right)\]
Thus, \[x = \left( {\dfrac{\pi }{4}} \right),\left( {\dfrac{{5\pi }}{4}} \right)\] for \[0\]to\[2\pi \].
And,
\[ \Rightarrow \tan x = - 1 = \tan \left( {\dfrac{{3\pi }}{4}} \right) = \tan \left( {\dfrac{{7\pi }}{4}} \right)\]
Thus, \[x = \left( {\dfrac{{3\pi }}{4}} \right),\left( {\dfrac{{7\pi }}{4}} \right)\] for \[0\] to \[2\pi \].
Therefore, the value of \[x\]are \[\left( {\dfrac{\pi }{4}} \right),\left( {\dfrac{{5\pi }}{4}} \right),\left( {\dfrac{{3\pi }}{4}} \right),\left( {\dfrac{{7\pi }}{4}} \right)\] for domain \[\left( {0 - 2\pi } \right)\].
Note:
We know that, we find the factor of \[\left( {{a^2} - {b^2}} \right)\]form type.
First, we want to calculate the factor of the above formula.
Then,
\[ \Rightarrow {a^2} - {b^2}\]
In the above expression, we can add and subtract the\[ab\]. By adding and subtracting the\[ab\], there is no effect in the above expression.
Then,
The above expression is written as below.
\[{a^2} - {b^2} + ab - ab\]
This is written as below form.
\[ \Rightarrow {a^2} - ab + ab - {b^2}\]
Then we take the common, in the first two we take the\[a\], is common and the last two we take the\[b\], is common.
Then the above expression is written as below.
\[a\left( {a - b} \right) + b\left( {a - b} \right)\]
By solving the above expression, the result would be as below.
\[\therefore \left( {a - b} \right)\left( {a + b} \right)\]
Then, we prove that \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\].
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE